975 resultados para pulsed power supplies
Resumo:
Large instruction windows and issue queues are key to exploiting greater instruction level parallelism in out-of-order superscalar processors. However, the cycle time and energy consumption of conventional large monolithic issue queues are high. Previous efforts to reduce cycle time segment the issue queue and pipeline wakeup. Unfortunately, this results in significant IPC loss. Other proposals which address energy efficiency issues by avoiding only the unnecessary tag-comparisons do not reduce broadcasts. These schemes also increase the issue latency.To address both these issues comprehensively, we propose the Scalable Lowpower Issue Queue (SLIQ). SLIQ augments a pipelined issue queue with direct indexing to mitigate the problem of delayed wakeups while reducing the cycle time. Also, the SLIQ design naturally leads to significant energy savings by reducing both the number of tag broadcasts and comparisons required.A 2 segment SLIQ incurs an average IPC loss of 0.2% over the entire SPEC CPU2000 suite, while achieving a 25.2% reduction in issue latency when compared to a monolithic 128-entry issue queue for an 8-wide superscalar processor. An 8 segment SLIQ improves scalability by reducing the issue latency by 38.3% while incurring an IPC loss of only 2.3%. Further, the 8 segment SLIQ significantly reduces the energy consumption and energy-delay product by 48.3% and 67.4% respectively on average.
Resumo:
In a dense multi-hop network of mobile nodes capable of applying adaptive power control, we consider the problem of finding the optimal hop distance that maximizes a certain throughput measure in bit-metres/sec, subject to average network power constraints. The mobility of nodes is restricted to a circular periphery area centered at the nominal location of nodes. We incorporate only randomly varying path-loss characteristics of channel gain due to the random motion of nodes, excluding any multi-path fading or shadowing effects. Computation of the throughput metric in such a scenario leads us to compute the probability density function of random distance between points in two circles. Using numerical analysis we discover that choosing the nearest node as next hop is not always optimal. Optimal throughput performance is also attained at non-trivial hop distances depending on the available average network power.
Resumo:
In the recent years, there has been a trend to run metallic pipelines carrying petroleum products and high voltage AC power lines parallel to each other in a relatively narrow strip of land. Due to this sharing of the right-of-way, verhead AC power line electric field may induce voltages on the metallic pipelines running in close vicinity leading to serious adverse effects. In this paper, the induced voltages on metallic pipelines running in close vicinity of high voltage power transmission lines have been computed. Before computing the induced voltages, an optimum configuration of the phase conductors based on the lowest conductor surface gradient and field under transmission line has been arrived at. This paper reports the conductor surface field gradients calculated for the various configurations. Also the electric fields under transmission line, for single circuit and double circuit (various phase arrangements) have been analyzed. Based on the above results, an optimum configuration giving the lowest field under the power line as well as the lowest conductor surface gradient has been arrived at and for this configuration, induced voltage on the pipeline has been computed using the Charge Simulation Method (CSM). For comparison, induced voltages on the pipeline has been computed for the various other phase configurations also.