973 resultados para proton pump inhibitor
Resumo:
We report results from experiments performed at the Rutherford Appleton Laboratory using the VULCAN laser facility (I>5x10(19) W cm(-2)). Single wire targets were used, and on some shots additional objects were placed near the target. These were positioned so that they were not irradiated by the laser. Proton emission from single wire targets was observed as radially symmetric structures (
Resumo:
Protons of energies up to 37 MeV have been generated when ultra-intense lasers (up to 10(20) W cm(-2)) interact with hydrogen containing solid targets. These protons can be used to induce nuclear reactions in secondary targets to produce P-emitting nuclei of relevance to the nuclear medicine community, namely C-11 and N-13 via (p, n) and (p, alpha) reactions. Activities of the order of 200 kBq have been measured from a single laser pulse interacting with a thin solid target. The possibility of using ultra-intense lasers to produce commercial amounts of short-lived positron emitting sources for positron emission tomography (PET) is discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Cellular recovery from ionizing radiation (IR)-induced damage involves poly(ADP-ribose) polymerase (PARP-1 and PARP-2) activity, resulting in the induction of a signalling network responsible for the maintenance of genomic integrity. In the present work, a charged particle microbeam delivering 3.2 MeV protons from a Van de Graaff accelerator has been used to locally irradiate mammalian cells. We show the immediate response of PARPs to local irradiation, concomitant with the recruitment of ATM and Rad51 at sites of DNA damage, both proteins being involved in DNA strand break repair. We found a co-localization but no connection between two DNA damage-dependent post-translational modifications, namely poly(ADP-ribosyl)ation of nuclear proteins and phosphorylation of histone H2AX. Both of them, however, should be considered and used as bona fide immediate sensitive markers of IR damage in living cells. This technique thus provides a powerful approach aimed at understanding the interactions between the signals originating from sites of DNA damage and the subsequent activation of DNA strand break repair mechanisms.
Resumo:
Laser driven proton beams have been used to diagnose transient fields and density perturbations in laser produced plasmas. Grid deflectometry techniques have been applied to proton radiography to obtain precise measurements of proton beam angles caused by electromagnetic fields in laser produced plasmas. Application of proton radiography to laser driven implosions has demonstrated that density conditions in compressed media can be diagnosed with million electron volt protons. This data has shown that proton radiography can provide unique insight into transient electromagnetic fields in super critical density plasmas and provide a density perturbation diagnostics in compressed matter.
Resumo:
FLIP is a potential anti-cancer therapeutic target that inhibits apoptosis by blocking caspase 8 activation by death receptors. We report a novel interaction between FLIP and the DNA repair protein Ku70 that regulates FLIP protein stability by inhibiting its polyubiquitination. Furthermore, we found that the histone deacetylase (HDAC) inhibitor Vorinostat (SAHA) enhances the acetylation of Ku70, thereby disrupting the FLIP/Ku70 complex and triggering FLIP polyubiquitination and degradation by the proteasome. Using in vitro and in vivo colorectal cancer models, we further demonstrated that SAHA-induced apoptosis is dependant on FLIP downregulation and caspase 8 activation. In addition, an HDAC6-speci?c inhibitor Tubacin recapitulated the effects of SAHA, suggesting that HDAC6 is a key regulator of Ku70 acetylation and FLIP protein stability. Thus, HDAC inhibitors with anti-HDAC6 activity act as ef?cient post-transcriptional suppressors of FLIP expression and may, therefore, effectively act as ‘FLIP inhibitors’ © 2012 Macmillan Publishers Limited.
Resumo:
The metalloproteases ZapA of Proteus mirabilis and LasB of Pseudomonas aeruginosa are known to be virulence factors their respective opportunistic bacterial pathogens, and are members of the structurally related serralysin and thermolysin families of bacterial metalloproteases respectively. Secreted at the site of infection, these proteases play a key role in the infection process, contributing to tissue destruction and processing of components of the host immune system. Inhibition of these virulence factors may therefore represent an antimicrobial strategy, attenuating the virulence of the infecting pathogen. Previously we have screened a library of N-alpha mercaptoamide dipeptide inhibitors against both ZapA and LasB, with the aim of mapping the S1' binding site of the enzymes, revealing both striking similarities and important differences in their binding preferences. Here we report the design, synthesis, and screening of several inhibitor analogues, based on two parent inhibitors from the original library. The results have allowed for further characterization of the ZapA and LasB active site binding pockets, and have highlighted the possibility for development of broad-spectrum bacterial protease inhibitors, effective against enzymes of the thermolysin and serralysin metalloprotease families.
Resumo:
The chemical complexity of the defensive skin secretion of the red-eyed leaf frog, (Agalychnis callidryas), has not been elucidated in detail. During a systematic study of the skin secretion peptidomes of phyllomedusine frogs, we discovered a novel Kazal-type protein with potent trypsin inhibitory activity (Ki = 1.9 nM) that displays the highest degree of structural similarity with Kazal proteins from bony fishes. The protein was located in reverse-phase HPLC fractions following a screen of such for trypsin inhibition and subsequent partial Edman degradation of the peak active fraction derived the sequence: ATKPR-QYIVL-PRILRPV-GT. The molecular mass of the major component in this fraction was established by MALDI-TOF MS as 5893.09 Da. This partial sequence (assuming blank cycles to be Cys residues) was used to design a degenerate primer pool that was employed successfully in RACE-PCR to clone homologous precursor-encoding cDNA that encoded a mature Kazal protein of 52 amino acid residues with a computed molecular mass of 5892.82 Da. The protein was named A. callidryas Kazal trypsin inhibitor (ACKTI). BLAST analysis revealed that ACKTI contained a canonical Kazal motif (C-x(7)-C-x(6)-Y-x(3)-C-x(2,3)-C). This novel amphibian skin Kazal trypsin inhibitor adds to the spectrum of trypsin inhibitors of Kunitz- and Bowman Birk-type reported from this amphibian source.
Resumo:
BACKGROUND AND PURPOSE:
Amyloid-ß (Aß) aggregation into synaptotoxic, prefibrillar oligomers is a major pathogenic event underlying the neuropathology of Alzheimer's disease (AD). The pharmacological and neuroprotective properties of a novel Aß aggregation inhibitor, SEN1269, were investigated on aggregation and cell viability and in test systems relevant to synaptic function and memory, using both synthetic Aß(1-42) and cell-derived Aß oligomers.
EXPERIMENTAL APPROACH:
Surface plasmon resonance studies measured binding of SEN1269 to Aß(1-42) . Thioflavin-T fluorescence and MTT assays were used to measure its ability to block Aß(1-42) -induced aggregation and reduction in cell viability. In vitro and in vivo long-term potentiation (LTP) experiments measured the effect of SEN1269 on deficits induced by synthetic Aß(1-42) and cell-derived Aß oligomers. Following i.c.v. administration of the latter, a complex (alternating-lever cyclic ratio) schedule of operant responding measured effects on memory in freely moving rats.
KEY RESULTS:
SEN1269 demonstrated direct binding to monomeric Aß(1-42) , produced a concentration-related blockade of Aß(1-42) aggregation and protected neuronal cell lines exposed to Aß(1-42) . In vitro, SEN1269 alleviated deficits in hippocampal LTP induced by Aß(1-42) and cell-derived Aß oligomers. In vivo, SEN1269 reduced the deficits in LTP and memory induced by i.c.v. administration of cell-derived Aß oligomers.
CONCLUSIONS AND IMPLICATIONS:
SEN1269 protected cells exposed to Aß(1-42) , displayed central activity with respect to reducing Aß-induced neurotoxicity and was neuroprotective in electrophysiological and behavioural models of memory relevant to Aß-induced neurodegeneration. It represents a promising lead for designing inhibitors of Aß-mediated synaptic toxicity as potential neuroprotective agents for treating AD.