930 resultados para proportional to absolute temperature (PTAT)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nano-scale instability in the beta phase resulting in the formation of the disordered orthorhombic O' phase has been discovered in a fairly dilute binary Ti-Mo alloy, using selected area electron diffraction and high resolution scanning transmission electron microscopy. The O' phase informed in the alloy when the Mo content exceeds a critical value. The instability occurs in beta-solutionized samples that have been quenched to room temperature and is found to co-exist with athermal omega to phase. Interestingly, this nano-scale instability, involving the {110}<1<(1)over bar>0> soft-phonon shuffle, occurs in the beta phase without deliberate additions of either interstitial or substitutional solutes. (C) 2016 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An efficient buffer layer scheme has been designed to address the issue of curvature management during metalorganic chemical vapour deposition growth of GaN on Si (111) substrate. This is necessary to prevent cracking of the grown layer during post-growth cooling down from growth temperature to room temperature and to achieve an allowable bow (<40 m) in the wafer for carrying out lithographic processes. To meet both these ends simultaneously, the stress evolution in the buffer layers was observed carefully. The reduction in precursor flow during the buffer layer growth provided better control over curvature evolution in the growing buffer layers. This has enabled the growth of a suitable high electron mobility transistor (HEMT) stack on 2'' Si (111) substrate of 300 m thickness with a bow as low as 11.4 m, having a two-dimensional electron gas (2DEG) of mobility, carrier concentration, and sheet resistance values 1510 cm(2)/V-s, 0.96 x 10(13)/cm(2), and 444 /, respectively. Another variation of similar technique resulted in a bow of 23.4 m with 2DEG mobility, carrier concentration, and sheet resistance values 1960 cm(2)/V-s, 0.98 x 10(13)/cm(2), and 325 /, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of thermal-mechanical loading on a surface mount assembly with interface cracks between the solder and the resistor and between the solder and the printed circuit board (PCB) was studied using a non-linear thermal finite element analysis. The thermal effect was taken as cooling from the solder eutectic temperature to room temperature. Mechanical loading at the ends of the PCB was also applied. The results showed that cooling had the effect of causing large residual shear displacement at the region near the interface cracks. The mechanical loading caused additional crack opening displacements. The analysis on the values of J-integral for the interface cracks showed that J-integral was approximately path independent, and that the effect of crack at the solder/PCB interface is much more serious than that between the component and solder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

在0.05 mol/L Tris,0.15 mol/L NaCl溶液中,用吸附伏安法研究长春新碱(VCR),其峰电位在-1.68 V(vs. Ag/AgCl),峰电流与1.0*10^{-8}~2.0*10^{-7}mol/L VCR浓度成正比,检测限为7.0*l0^{-9} mol/L,用常规脉冲极谱法、线性扫描和循环伏安法等研究该体系的电化学行为,实验表明,电极还原过程为具有吸附特征的不可逆过程。VCR的吸附符合Frumkin吸附等温式。也研究了VCR与微管蛋白的相互作用。实验表明,VCR与微管蛋白形成一电活性的结合物,这一结合物具有吸附性,且还原过程也为不可逆过程。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of 23 kinds of waveriders, derived from different conical flowfields, is analyzed by the numerical computation under the conditions of fight speed of Mach 6, attack angle of 0° and flight altitude of 30 km. These results indicate that the performance is influenced by the shapes and the width to height ratios (W/H ) of generating cones. The geometrical parameter and the lift coefficient are proportional to W/H, while the drag coefficient and the lift to drag ratio (L/D ) have extreme values. Considering the base drag and the computation errors, the waverider with the highest L/D is cut from the elliptical cone’s flowfield (W/H = 1.5―1.618), and the configuration with the lowest drag can also be obtained at W/H = 1:1.5. Accordingly, good suggestions are proposed for practical design based on these computational results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We recently proposed a strain gradient theory to account for the size dependence of plastic deformation at micron and submicron length scales. The strain gradient theory includes the effects of both rotation gradient and stretch gradient such that the rotation gradient influences the material character through the interaction between the Cauchy stresses and the couple stresses; the stretch gradient measures explicitly enter the constitutive relations through the instantaneous tangent modulus. Indentation tests at scales on the order of one micron have shown that measured hardness increases significantly with decreasing indent size. In the present paper, the strain gradient theory is used to model materials undergoing small-scale indentations. A strong effect of including strain gradients in the constitutive description is found with hardness increasing by a factor of two or more over the relevant range behavior. Comparisons with the experimental data for polycrystalline copper and single crystal copper indeed show an approximately linear dependence of the square of the hardness, H 2, on the inverse of the indentation depth, 1/h, I.e., H-2 proportional to 1/h, which provides an important self-consistent check of the strain gradient theory proposed by the authors earlier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we demonstrate strong flexoelectric coupling in bimesogenic liquid crystals. This strong coupling is determined via the flexoelectro-optic effect in chiral nematic liquid crystals based on bimesogenic mixtures that are doped with low concentrations of high twisting power chiral additive. Two mixtures were examined: one had a pitch length of p∼300nm, the other had a pitch length of p∼600nm. These mixtures exhibit enantiotropic chiral nematic phases close to room temperature. We found that full-intensity modulation, that is, a rotation of the optic axis of 45° between crossed polarizers, could be achieved at significantly lower applied electric fields (E<5Vμm -1) than previously reported. In fact, for the condition of full-intensity modulation, the lowest electric-field strength recorded was E=2Vμm-1. As a result of a combination of the strong flexoelectric coupling and a divergence in the pitch, tilt angles of the optic axis up to 87°, i.e., a rotation of the optic axis through 174°, were observed. Furthermore, the flexoelastic ratios, which may be considered as a figure-of-merit parameter, were calculated from the results and found to be large, ranging from 1.3to2C/Nm for a temperature range of up to 40°C. © 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this letter, the uniform lying helix (ULH) liquid crystal texture, required for the flexoelectro-optic effect, is polymer stabilized by the addition of a small percentage of reactive mesogen to a high-tilt-angle (φ>60°) bimesogenic chiral nematic host. The electro-optic response is measured for a range of reactive mesogen concentration mixtures, and compared to the large-tilt-angle switch of the pure chiral nematic mixture. The optimum concentration of reactive mesogen, which is found to provide ample stabilization of the texture with minimal impact on the electro-optic response, is found to be approximately 3%. Our results indicate that polymer stabilization of the ULH texture using a very low concentration of reactive mesogen is a reliable way of ruggedizing flexoelectro-optic devices without interfering significantly with the electro-optics of the effect, negating the need for complicated surface alignment patterns or surface-only polymerization. The polymer stabilization is shown to reduce the temperature dependence of the flexoelectro-optic response due to "pinning" of the chiral nematic helical pitch. This is a restriction of the characteristic thermochromic behavior of the chiral nematic. Furthermore, selection of the temperature at which the sample is ultraviolet cured allows the tilt angle to be optimized for the entire chiral nematic temperature range. The response time, however, remains more sensitive to operating temperature than curing temperature. This allows the sample to be cured at low temperature and operated at high temperature, providing simultaneous optimization of these two previously antagonistic performance aspects. © 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon thin films are very important as protective coatings for a wide range of applications such as magnetic storage devices. The key parameter of interest is the sp3 fraction, since it controls the mechanical properties of the film. Visible Raman spectroscopy is a very popular technique to determine the carbon bonding. However, the visible Raman spectra mainly depend on the configuration and clustering of the sp2 sites. This can result in the Raman spectra of different samples looking similar albeit having a different structure. Thus, visible Raman alone cannot be used to derive the sp3 content. Here we monitor the carbon bonding by using a combined study of Raman spectra taken at two wavelengths (514 and 244 nm). We show how the G peak dispersion is a very useful parameter to investigate the carbon samples and we endorse it as a production-line characterisation tool. The dispersion is proportional to the degree of disorder, thus making it possible to distinguish between graphitic and diamond-like carbon. © 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamic localization of saturated soil is investigated by considering the influence of higher strain gradient. It is shown that the strain gradient has a significant influence on the evolution of shear band in saturated soil and that the width of shear band is proportional to the square root of the strain gradient softening coefficient. The numerical simulation is processed to investigate the influences of shear strain gradient and other factors on the evolution of shear band.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

英文摘要: Rosetting, or forming a cell aggregate between a single target nucleated cell and a number of red blood cells (RBCs), is a simple assay for cell adhesion-mediated by specific receptor-ligand interaction. For example, rosette formation between sheep RBC and human lymphocytes has been used to differentiate T cells from B cells. Rosetting assay is commonly used to determine the interaction of Fc gamma-receptors (Fc gamma R) expressed on inflammatory cells and IgG-coated on RBCs. Despite its wide use in measuring cell adhesion, the biophysical parameters of rosette formation have not been well characterized. Here we developed a probabilistic model to describe the distribution of rosette sizes, which is Poissonian. The average rosette size is predicted to be proportional to the apparent two-dimensional binding affinity of the interacting receptor-ligand pair and their site densities. The model has been supported by experiments of rosettes mediated by four molecular interactions: Fc gamma RIII interacting with IgG, T cell receptor and coreceptor CD8 interacting with antigen peptide presented by major histocompatibility molecule, P-selectin interacting with P-selectin glycoprotein ligand 1 (PSGL-1), and L-selectin interacting with PSGL-1. The latter two are structurally similar and are different from the former two. Fitting the model to data enabled us to evaluate the apparent effective two-dimensional binding affinity of the interacting molecular pairs: 7.19x10(-5) mu m(4) for Fc gamma RIII-IgG interaction, 4.66x10(-3) mu m(4) for P-selectin-PSGL-1 interaction, and 0.94x10(-3) mu m(4) for L-selectin-PSGL-1 interaction. These results elucidate the biophysical mechanism of rosette formation and enable it to become a semiquantitative assay that relates the rosette size to the effective affinity for receptor-ligand binding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose and analyse a new model of thermocapillary convection with evaporation in a cavity subjected to horizontal temperature gradient, rather than the previously studied model without evaporation. The pure liquid layer with a top free surface in contact with its own vapour is considered in microgravity condition. The computing programme developed for simulating this model integrates the two-dimensional, time-dependent Navier-Stokes equations and energy equation by a second-order accurate projection method. We focus on the coupling of evaporation and thermocapillary convection by investigating the influence of evaporation Biot number and Marangoni number on the interfacial mass and heat transfer. Three different regimes of the coupling mechanisms are found and explained from our numerical results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the closed form of solution to the stochastic differential equation for a fatigue crack evolution system is derived. and the relationship between metal fatigue damage and crack stochastic behaviour is investigated. It is found that the damage extent of metals is independent of crack stochastic behaviour ii the stochastic deviation of the crack growth rate is directly proportional to its mean value. The evolution of stochastic deviation of metal fatigue damage in the stage close to the transition point between short and long crack regimes is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 1999, the space experiments on the Marangoni convection and thermocapillary convection in a system of two immiscible liquid layers in microgravity environment were conducted on board the Chinese scientific satellite SJ-5. A new system of two-layer liquids such as FC-70 liquid and paraffin was used successfully, with the paraffin melted in the space. Two different test-cells are subjected to a temperature gradient perpendicular or parallel to the interface to study the Marangoni convection and thermocapillary convection, respectively. The experimental data obtained in the first Chinese space experiment of fluid are presented. Two-dimensional numerical simulations of thermocapillary convections are carried out using SIMPLEC method A reasonable agreement between the experimental investigation and the numerical results is obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A moving-coil designed micro-mechanics tester, named as MicroUTM (universal testing machine), is in-house developed in this paper for micro-mechanics tests. The main component is a moving coil suspended in a uniform magnetic field through a set of springs. When a current passes through the coil, the electromagnetic force is proportional to the magnitude of the current, so the load can easily be measured by the current. The displacement is measured using a capacitive sensor. The load is calibrated using a Sartorius BP211D analytical balance, with a resolution/range of 0.01 mg/80 g or 0.1 mg/210 g. The displacement is calibrated using a HEIDENHAIN CT-6002 length gauge with an accuracy of +/- 0.1 mu m. The calibration results show that the load range is +/- 1 N and the displacement range is +/- 300 mu m. The noise levels of the load and displacement are 50 mu N and 150 nm, respectively. The nonlinearity of the load is only 0.2%. Several in-plane load tests of the MEMS micro-cantilever are performed using this tester. Experimental results, with excellent repeatability, demonstrate the reliability of the load measurement as well as the flexible function of this tester.