951 resultados para probe hybridization
Resumo:
Invasive species are of great interest to evolutionary biologists and ecologists because they represent historical examples of dramatic evolutionary and ecological change. Likewise, they are increasingly important economically and environmentally as pests. Obtaining generalizations about the tiny fraction of immigrant taxa that become successful invaders has been frustrated by two enigmatic phenomena. Many of those species that become successful only do so (i) after an unusually long lag time after initial arrival, and/or (ii) after multiple introductions. We propose an evolutionary mechanism that may account for these observations. Hybridization between species or between disparate source populations may serve as a stimulus for the evolution of invasiveness. We present and review a remarkable number of cases in which hybridization preceded the emergence of successful invasive populations. Progeny with a history of hybridization may enjoy one or more potential genetic benefits relative to their progenitors. The observed lag times and multiple introductions that seem a prerequisite for certain species to evolve invasiveness may be a correlate of the time necessary for previously isolated populations to come into contact and for hybridization to occur. Our examples demonstrate that invasiveness can evolve. Our model does not represent the only evolutionary pathway to invasiveness, but is clearly an underappreciated mechanism worthy of more consideration in explaining the evolution of invasiveness in plants.
Resumo:
We present the results of two-pump and probe femtosecond experiments designed to follow the relaxation dynamics of the lowest excited state (S1) populated by different modes. In the first mode, a direct (S0 → S1) radiative excitation of the ground state is used. In the second mode, an indirect excitation is used where the S1 state is populated by the use of two femtosecond laser pulses with different colors and delay times between them. The first pulse excites the S0 → S1 transition whereas the second pulse excites the S1 → Sn transition. The nonradiative relaxation from the Sn state populates the lowest excited state. Our results suggest that the S1 state relaxes faster when populated nonradiatively from the Sn state than when pumped directly by the S0 → S1 excitation. Additionally, the Sn → S1 nonradiative relaxation time is found to change by varying the delay time between the two pump pulses. The observed dependence of the lowest excited state population as well as its dependence on the delay between the two pump pulses are found to fit a kinetic model in which the Sn state populates a different surface (called S′1) than the one being directly excited (S1). The possible involvement of the Ag type states, the J intermediate, and the conical intersection leading to the S0 or to the isomerization product (K intermediate) are discussed in the framework of the proposed model.
Resumo:
Transcriptional inactivation of one X chromosome in mammalian female somatic cells leads to condensation of the inactive X chromosome into the heterochromatic sex chromatin, or Barr body. Little is known about the molecular composition and structure of the Barr body or the mechanisms leading to its formation in female nuclei. Because human sera from patients with autoimmune diseases often contain antibodies against a variety of cellular components, we reasoned that some autoimmune sera may contain antibodies against proteins associated with the Barr body. Therefore, we screened autoimmune sera by immunofluorescence of human fibroblasts and identified one serum that immunostained a distinct nuclear structure with a size and nuclear localization consistent with the Barr body. The number of these structures was consistent with the number of Barr bodies expected in diploid female fibroblasts containing two to five X chromosomes. Immunostaining with the serum followed by fluorescence in situ hybridization with a probe against XIST RNA demonstrated that the major fluorescent signal from the autoantibody colocalized with XIST RNA. Further analysis of the serum showed that it stains human metaphase chromosomes and a nuclear structure consistent with the inactive X in female mouse fibroblasts. However, it does not exhibit localization to a Barr body-like structure in female mouse embryonic stem cells or in cells from female mouse E7.5 embryos. The lack of staining of the inactive X in cells from female E7.5 embryos suggests the antigen(s) may be involved in X inactivation at a stage subsequent to initiation of X inactivation. This demonstration of an autoantibody recognizing an antigen(s) associated with the Barr body presents a strategy for identifying molecular components of the Barr body and examining the molecular basis of X inactivation.
Resumo:
Oxytocin, a neurohypophyseal hormone, has been traditionally considered essential for mammalian reproduction. In addition to uterine contractions during labor and milk ejection during nursing, oxytocin has been implicated in anterior pituitary function, paracrine effects in the testis and ovary and the neural control of maternal and sexual behaviors. To determine the essential role(s) of oxytocin in mammalian reproductive function, mice deficient in oxytocin have been generated using embryonic stem cell technology. A deletion of exon 1 encoding the oxytocin peptide was generated in embryonic stem cells at a high frequency and was successfully transmitted in the germ line. Southern blot analysis of genomic DNA from homozygote offspring and in situ hybridization with an exonic probe 3' of the deletion failed to detect any oxytocin or neurophysin sequences, respectively, confirming that the mutation was a null mutation. Mice lacking oxytocin are both viable and fertile. Males do not have any reproductive behavioral or functional defects in the absence of oxytocin. Similarly, females lacking oxytocin have no obvious deficits in fertility or reproduction, including gestation and parturition. However, although oxytocin-deficient females demonstrate normal maternal behavior, all offspring die shortly after birth because of the dam's inability to nurse. Postpartum injections of oxytocin to the oxytocin deficient mothers restore milk ejection and rescue the offspring. Thus, despite the multiple reproductive activities that have been attributed to oxytocin, oxytocin plays an essential role only in milk ejection in the mouse.
Resumo:
The effect of Fos and Jun binding on the structure of the AP-1 recognition site is controversial. Results from phasing analysis and phase-sensitive detection studies of DNA bending by Fos and Jun have led to opposite conclusions. The differences between these assays, the length of the spacer between two bends and the length of the sequences flanking the bends, are investigated here using intrinsic DNA bend standards. Both an increase in the spacer length as well as a decrease in the length of flanking sequences resulted in a reduction in the phase-dependent variation in electrophoretic mobilities. Probes with a wide separation between the bends and short flanking sequences, such as those used in the phase-sensitive detection studies, displayed no phase-dependent mobility variation. This shape-dependent variation in electrophoretic mobilities was reproduced by complexes formed by truncated Fos and Jun. Results from ligase-catalyzed cyclization experiments have been interpreted to indicate the absence of DNA bending in the Fos-Jun-AP-1 complex. However, truncated Fos and Jun can alter the relative rates of inter- and intramolecular ligation through mechanisms unrelated to DNA bending, confounding the interpretation of cyclization data. The analogous phase- and shape-dependence of the electrophoretic mobilities of the Fos-Jun-AP-1 complex and an intrinsic DNA bend confirm that Fos and Jun bend DNA, which may contribute to their functions in transcription regulation.
Resumo:
A human melanoma-associated chondroitin sulfate proteoglycan (MCSP), recognized by mAb 9.2.27, plays a role in stabilizing cell-substratum interactions during early events of melanoma cell spreading on endothelial basement membranes. We report here the molecular cloning and nucleotide sequencing of cDNA encoding the entire core protein of human MCSP and provide its deduced amino acid sequence. This core protein contains an open reading frame of 2322 aa, encompassing a large extracellular domain, a hydrophobic transmembrane region, and a relatively short cytoplasmic tail. Northern blot analysis indicated that MCSP cDNA probes detect a single 8.0-kb RNA species expressed in human melanoma cell lines. In situ hybridization experiments with a segment of the MCSP coding sequence localized MCSP mRNA in biopsies prepared from melanoma skin metastases. Multiple human Northern blots with an MCSP-specific probe revealed a strong hybridization signal only with melanoma cells and not with other human cancer cells or a variety of human fetal and adult tissues. These data indicate that MCSP represents an integral membrane chondroitin sulfate proteoglycan expressed by human malignant melanoma cells. The availability of cDNAs encoding MCSP should facilitate studies designed to establish correlations between structure and function of this molecule and help to establish its role in the progression of human malignant melanoma.