997 resultados para power exhaust
Resumo:
Availability of producer gas engines at MW being limited necessitates to adapt engine from natural gas operation. The present work focus on the development of necessary kit for adapting a 12 cylinder lean burn turbo-charged natural gas engine rated at 900 kWe (Waukesha make VHP5904LTD) to operate on producer and set up an appropriate capacity biomass gasification system for grid linked power generation in Thailand. The overall plant configuration had fuel processing, drying, reactor, cooling and cleaning system, water treatment, engine generator and power evacuation. The overall project is designed for evacuation of 1.5 MWe power to the state grid and had 2 gasification system with the above configuration and 3 engines. Two gasification system each designed for about 1100 kg/hr of woody biomass was connected to the engine using a producer gas carburetor for the necessary Air to fuel ratio control. In the use of PG to fuel IC engines, it has been recognized that the engine response will differ as compared to the response with conventional fueled operation due to the differences in the thermo-physical properties of PG. On fuelling a conventional engine with PG, power de-rating can be expected due to the lower calorific value (LCV), lower adiabatic flame temperature (AFT) and the lower than unity product to reactant more ratio. Further the A/F ratio for producer gas is about 1/10th that of natural gas and requires a different carburetor for engine operation. The research involved in developing a carburetor for varying load conditions. The patented carburetor is based on area ratio control, consisting of a zero pressure regulator and a separate gas and air line along with a mixing zone. The 95 litre engine at 1000 rpm has an electrical efficiency of 33.5 % with a heat input of 2.62 MW. Each engine had two carburetors designed for producer gas flow each capable of handling about 1200 m3/hr in order to provide similar engine heat input at a lower conversion efficiency. Cold flow studies simulating the engine carburetion system results showed that the A/F was maintained in the range of 1.3 +/- 0.1 over the entire flow range. Initially, the gasification system was tested using woody biomass and the gas composition was found to be CO 15 +/- 1.5 % H-2 22 +/- 2% CH4 2.2 +/- 0.5 CO2 11.25 +/- 1.4 % and rest N-2, with the calorific value in the range of 5.0 MJ/kg. After initial trials on the engine to fine tune the control system and adjust various engine operating parameter a peak load of 800 kWe was achieved, while a stable operating conditions was found to be at 750 kWe which is nearly 85 % of the natural gas rating. The specific fuel consumption was found to be 0.9 kg of biomass per kWh.
Resumo:
This paper presents the experience of the new design of using impinging jet spray columns for scrubbing hydrogen sulfide from biogas that has been developed by Indian Institute of Science and patented. The process uses a chelated polyvalent metal ion which oxidizes the hydrogen sulfide to sulfur as a precipitate. The sulfur generated is filtered and the scrubbing liquid recycled after oxidation. The process involves in bringing contact the sour gas with chelated liquid in the spray columns where H2S reacts with chelated Fe3+ and precipitates as sulfur, whereas Fe3+ gets reduced to Fe2+. Fe2+ is regenerated to Fe3+ by reaction of oxygen in air in a separate packed column. The regenerated liquid is recirculated. Sulfur is filtered and separated as a byproduct. The paper presents the experience in using the spray towers for hydrogen sulfide removal and further use of the clean gas for generating power using gas engines. The maximum allowable limit of H2S for the gas engine is 200 ppm (v/v) in order to prevent any corrosion of engine parts and fouling of the lubricating oil. With the current ISET process, the hydrogen sulfide from the biogas is cleaned to less than 100 ppm (v/v) and the sweet gas is used for power generation. The system is designed for 550 NM3/hr of biogas and inlet H2S concentration of 2.5 %. The inlet concentration of the H2S is about 1 - 1.5 % and average measured outlet concentration is about 30 ppm, with an average gas flow of about 300 - 350 NM3/hr, which is the current gas production rate. The sweet gas is used for power generation in a 1.2 MWe V 12 engine. The average power generation is about 650 - 750 kWe, which is the captive load of the industry. The plant is a CHP (combined heat power) unit with heat from the cylinder cooling and flue being recovered for hot water and steam generation respectively. The specific fuel consumption is 2.29 kWh/m(3) of gas. The system has been in operation for more than 13,000 hours in last one year in the industry. About 8.4 million units of electricity has been generated scrubbing about 2.1 million m3 of gas. Performance of the scrubber and the engine is discussed at daily performance level and also the overall performance with an environment sustenance by precipitating over 27 tons of sulfur.
Resumo:
We address the problem of passive eavesdroppers in multi-hop wireless networks using the technique of friendly jamming. The network is assumed to employ Decode and Forward (DF) relaying. Assuming the availability of perfect channel state information (CSI) of legitimate nodes and eavesdroppers, we consider a scheduling and power allocation (PA) problem for a multiple-source multiple-sink scenario so that eavesdroppers are jammed, and source-destination throughput targets are met while minimizing the overall transmitted power. We propose activation sets (AS-es) for scheduling, and formulate an optimization problem for PA. Several methods for finding AS-es are discussed and compared. We present an approximate linear program for the original nonlinear, non-convex PA optimization problem, and argue that under certain conditions, both the formulations produce identical results. In the absence of eavesdroppers' CSI, we utilize the notion of Vulnerability Region (VR), and formulate an optimization problem with the objective of minimizing the VR. Our results show that the proposed solution can achieve power-efficient operation while defeating eavesdroppers and achieving desired source-destination throughputs simultaneously. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Remote sensing of physiological parameters could be a cost effective approach to improving health care, and low-power sensors are essential for remote sensing because these sensors are often energy constrained. This paper presents a power optimized photoplethysmographic sensor interface to sense arterial oxygen saturation, a technique to dynamically trade off SNR for power during sensor operation, and a simple algorithm to choose when to acquire samples in photoplethysmography. A prototype of the proposed pulse oximeter built using commercial-off-the-shelf (COTS) components is tested on 10 adults. The dynamic adaptation techniques described reduce power consumption considerably compared to our reference implementation, and our approach is competitive to state-of-the-art implementations. The techniques presented in this paper may be applied to low-power sensor interface designs where acquiring samples is expensive in terms of power as epitomized by pulse oximetry.
Resumo:
With ever more stringent NOX emissions, it is necessary to examine removal of nitrogen oxide from diesel engine exhaust. This paper describes the study of NOX reduction from 5.9-kW stationary diesel engine exhaust under nanosecond pulse energization. Two plasma reactors characterized by dielectric barrier discharge has been designed, built, and evaluated. One of the reactor designs include nine numbers of electrodes kept in parallel, and the exhaust was allowed to pass axially, whereas the second reactor consists of nine parallel electrodes and the exhaust was allowed to pass radially. The reactors were individually tested for the treatment of nitrogen oxides for gas flow rate of 2, 5, and 10 L/min. Both the reactors have been individually tested, and results show an appreciable removal of NOX with equal discharge volume. From the results, it was found that both the reactors were an efficient NOX removal. With consumption of only 36 J/L, the reactors had shown a considerable 45% DeNO(X) efficiency.
Resumo:
We consider optimal average power allocation policies in a wireless channel in the presence of individual delay constraints on the transmitted packets. Power is consumed in transmission of data only. We consider the case when the power used in transmission is a linear function of the data transmitted. The transmission channel may experience multipath fading. We have developed a computationally efficient online algorithm, when there is same hard delay constraint for all packets. Later on, we generalize it to the case when there are multiple real time streams with different hard deadline constraints. Our algorithm uses linear programming and has very low complexity.
Resumo:
Experiments were conducted at laboratory level to treat the oxides of nitrogen (NOx) present in raw and dry biodiesel exhaust utilizing a combination of electric discharge plasma and bauxite residue, i. e., red mud, an industrial waste byproduct from the aluminum industry. In this paper, the adsorption and a possible catalytic property of bauxite residue are discussed. Nonthermal plasma was generated using dielectric barrier discharges initiated by ac/repetitive pulse energization. The effect of corona electrodes on the plasma generation was qualitatively studied through NOx cleaning. The plasma reactor and adsorbent reactors were connected in cascade while treating the exhaust. The diesel generator, running on biodiesel fuel, was electrically loaded to study the effectiveness of the cascade system in cleaning the exhaust. Interestingly, under the laboratory conditions studied, plasma-bauxite residue combination has shown good synergistic properties and enhanced the NOx removal up to about 90%. With proper scaling up, the suggested cascade system may become an economically feasible option to treat the exhaust in larger installations. The results were discussed emphasizing the role of bauxite residue as an adsorbent and as a room temperature catalyst.
Resumo:
Wafer/microcrystallites of oxidized Ge with holes/nanoholes synthesized by thermal oxidation strategy from Ge wafer/microcrystallites can convert one wavelength to another. Both oxidized Ge wafer and microcrystallites shows excitation- and power-dependent luminescence. Red-shift is observed as the excitation wavelength is increased, while blue-shift is observed as power density is increased. Over all, blue-green-yellow-orange luminescence is observed depending on the excitation wavelength and the morphology of oxidized Ge. The various defects level associated with germanium-oxygen vacancies in GeO2 and Ge/GeO2 interface are responsible for the excitation-dependent luminescence. Being a light-conversion material, oxidized Ge is expected to find potential applications in solid-state lighting, photovoltaic devices and photocatalysis. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
In concentrated solar power(CSP) generating stations, incident solar energy is reflected from a large number of mirrors or heliostats to a faraway receiver. In typical CSP installations, the mirror needs to be moved about two axes independently using two actuators in series with the mirror effectively mounted at a single point. A three degree-of-freedom parallel manipulator, namely the 3-RPS parallel manipulator, is proposed to track the sun. The proposed 3-RPS parallel manipulator supports the load of the mirror, structure and wind loading at three points resulting in less deflection, and thus a much larger mirror can be moved with the required tracking accuracy and without increasing the weight of the support structure. The kinematics equations to determine motion of the actuated prismatic joints in the 3-RPS parallel manipulator such that the sun's rays are reflected on to a stationary receiver are developed. Using finite element analysis, it is shown that for same sized mirror, wind loading and maximum deflection requirement, the weight of the support structure is between 15% and 60% less with the 3-RPS parallel manipulator when compared to azimuth-elevation or the target-aligned configurations.
Resumo:
This study concerns the relationship between the power law recession coefficient k (in - dQ/dt = kQ(alpha), Q being discharge at the basin outlet) and past average discharge Q(N) (where N is the temporal distance from the center of the selected time span in the past to the recession peak), which serves as a proxy for past storage state of the basin. The strength of the k-Q(N) relationship is characterized by the coefficient of determination R-N(2), which is expected to indicate the basin's ability to hold water for N days. The main objective of this study is to examine how R-N(2) value of a basin is related with its physical characteristics. For this purpose, we use streamflow data from 358 basins in the United States and selected 18 physical parameters for each basin. First, we transform the physical parameters into mutually independent principal components. Then we employ multiple linear regression method to construct a model of R-N(2) in terms of the principal components. Furthermore, we employ step-wise multiple linear regression method to identify the dominant catchment characteristics that influence R-N(2) and their directions of influence. Our results indicate that R-N(2) is appreciably related to catchment characteristics. Particularly, it is noteworthy that the coefficient of determination of the relationship between R-N(2) and the catchment characteristics is 0.643 for N = 45. We found that topographical characteristics of a basin are the most dominant factors in controlling the value of R-N(2). Our results may be suggesting that it is possible to tell about the water holding capacity of a basin by just knowing about a few of its physical characteristics. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
UHV power transmission lines have high probability of shielding failure due to their higher height, larger exposure area and high operating voltage. Lightning upward leader inception and propagation is an integral part of lightning shielding failure analysis and need to be studied in detail. In this paper a model for lightning attachment has been proposed based on the present knowledge of lightning physics. Leader inception is modeled based on the corona charge present near the conductor region and the propagation model is based on the correlation between the lightning induced voltage on the conductor and the drop along the upward leader channel. The inception model developed is compared with previous inception models and the results obtained using the present and previous models are comparable. Lightning striking distances (final jump) for various return stroke current were computed for different conductor heights. The computed striking distance values showed good correlation with the values calculated using the equation proposed by the IEEE working group for the applicable conductor heights of up to 8 m. The model is applied to a 1200 kV AC power transmission line and inception of the upward leader is analyzed for this configuration.
Resumo:
Biodiesel run engines are gaining popularity since the last few years as a viable alternative to conventional petro-diesel based engines. In biodiesel exhaust the content of volatile organic compounds, oil mist, and mass of particulate matter is considerably lower. However, the concentration of oxides of nitrogen (NOx) is relatively higher. In this paper the biodiesel exhaust from a stationary engine is treated under controlled laboratory conditions for removal of NOx using dielectric barrier discharge plasma in cascade with adsorbents prepared from abundantly available industrial waste byproducts like red mud and copper slag. Results were compared with gamma-alumina, a commercial adsorbent. Two different dielectric barrier discharge (DBD) reactors were tested for their effectiveness under Repetitive pulses /AC energization. NOx removal as high as 80% was achieved with pulse energized reactors when cascaded with red mud as adsorbent.
Resumo:
Single-phase DC/AC power electronic converters suffer from pulsating power at double the line frequency. The commonest practice to handle the issue is to provide a huge electrolytic capacitor for smoothening out the ripple. But, the electrolytic capacitors having short end of lifetimes limit the overall lifetime of the converter. Another way of handling the ripple power is by active power decoupling (APD) using the storage devices and a set of semiconductor switches. Here, a novel topology has been proposed implementing APD. The topology claims the benefit of 1) reduced stress on converter switches 2) using smaller capacitance value thus alleviating use of electrolytic capacitor in turn improving the lifetime of the converter. The circuit consists of a third leg, a storage capacitor and a storage inductor. The analysis and the simulation results are shown to prove the effectiveness of the topology.
Resumo:
Semiconductor device junction temperatures are maintained within datasheet specified limits to avoid failure in power converters. Burn-in tests are used to ensure this. In inverters, thermal time constants can be large and burn-in tests are required to be performed over long durations of time. At higher power levels, besides increased production cost, the testing requires sources and loads that can handle high power. In this study, a novel method to test a high power three-phase grid-connected inverter is proposed. The method eliminates the need for high power sources and loads. Only energy corresponding to the losses is consumed. The test is done by circulating rated current within the three legs of the inverter. All the phase legs being loaded, the method can be used to test the inverter in both cases of a common or independent cooling arrangement for the inverter phase legs. Further, the method can be used with different inverter configurations - three- or four-wire and for different pulse width modulation (PWM) techniques. The method has been experimentally validated on a 24 kVA inverter for a four-wire configuration that uses sine-triangle PWM and a three-wire configuration that uses conventional space vector PWM.