969 resultados para polarization curves
Resumo:
Análisis de la polarización en medios dieléctricos anisótropos no lineales centrosimétricos y no centrosimétricos.
Resumo:
In this paper a novel dual-band single circular polarization antenna feeding network for satellite communications is presented. The novel antenna feed chain1 is composed of two elements or subsystems, namely a diplexer and a bi-phase polarizer. In comparison with the classic topology based on an orthomode transducer and a dual-band polarizer, the proposed feed chain presents several advantages, such as compactness, modular design of the different components, broadband operation and versatility in the subsystems interconnection. The design procedure of this new antenna feed configuration is explained. Different examples of antenna feeding networks at 20/30 GHz are presented. It is pointed out the excellent results obtained in terms of isolation and axial ratio.
Resumo:
We propose the use of a polarization based interferometer with variable transfer function for the generation of temporally flat top pulses from gain switched single mode semiconductor lasers. The main advantage of the presented technique is its flexibility in terms of input pulse characteristics, as pulse duration, spectral bandwidth and operating wavelength. Theoretical predictions and experimental demonstrations are presented and the proposed technique is applied to two different semiconductor laser sources emitting in the 1550 nm region. Flat top pulses are successfully obtained with input seed pulses with duration ranging from 40 ps to 100 ps.
Resumo:
A photonic crystal fiber selectively filled with silver nanoparticles dispersed in polydimethylsiloxane has been numerically studied via finite elements analysis. These nanoparticles possess a localized surface plasmon resonance in the visible region which depends on the refractive index of the surrounding medium. The refractive index of polydimethylsiloxane can be thermally tuned leading to the design of polarization tunable filters. Filters found with this setup show anisotropic attenuation of the x-polarization fundamental mode around ?x = 1200dB/cm remarkably higher than the y-polarization mode. Moreover, high fiber birefringence and birefringence reversal is observed in the spectral region of the plasmon.
Resumo:
A reflectarray antenna with improved performance is proposed to operate in dual-polarization and transmit-receive frequencies in Ku-band for broadcast satellite applications. The reflectarray element contains two orthogonal sets of four coplanar parallel dipoles printed on two surfaces, each set combining lateral and broadside coupling. A 40-cm prototype has been designed, manufactured, and tested. The lengths of the coupled dipoles in the reflectarray cells have been optimized to produce a collimated beam in dual polarization in the transmit and receive bands. The measured radiation patterns confirm the high performance of the antenna in terms of bandwidth (27%), low losses, and low levels of cross polarization. Some preliminary simulations at 11.95 GHz for a 1.2-m antenna with South American coverage are presented to show the potential of the proposed antenna for spaceborne antennas in Ku-band.
Resumo:
Allergens come into contact with the immune system as components of a very diverse mixture. The most common sources are pollen grains, food, and waste. These sources contain a variety of immunomodulatory components that play a key role in the induction of allergic sensitization. The way allergen molecules bind to the cells of the immune system can determine the immune response. In order to better understand how allergic sensitization is triggered, we review the molecular mechanisms involved in the development of allergy and the role of immunomodulators in allergen recognition by innate cells.
Resumo:
The proper localization of resident membrane proteins to the trans-Golgi network (TGN) involves mechanisms for both TGN retention and retrieval from post-TGN compartments. In this study we report identification of a new gene, GRD20, involved in protein sorting in the TGN/endosomal system of Saccharomyces cerevisiae. A strain carrying a transposon insertion allele of GRD20 exhibited rapid vacuolar degradation of the resident TGN endoprotease Kex2p and aberrantly secreted ∼50% of the soluble vacuolar hydrolase carboxypeptidase Y. The Kex2p mislocalization and carboxypeptidase Y missorting phenotypes were exhibited rapidly after loss of Grd20p function in grd20 temperature-sensitive mutant strains, indicating that Grd20p plays a direct role in these processes. Surprisingly, little if any vacuolar degradation was observed for the TGN membrane proteins A-ALP and Vps10p, underscoring a difference in trafficking patterns for these proteins compared with that of Kex2p. A grd20 null mutant strain exhibited extremely slow growth and a defect in polarization of the actin cytoskeleton, and these two phenotypes were invariably linked in a collection of randomly mutagenized grd20 alleles. GRD20 encodes a hydrophilic protein that partially associates with the TGN. The discovery of GRD20 suggests a link between the cytoskeleton and function of the yeast TGN.
Resumo:
The importance of cation->aromatic polarization effects on cation-π interactions has been explored. Theoretical calculations demonstrate that polarization is a large contribution to cation-aromatic interactions, and particularly to cation-π interactions. For a series of compounds with a similar aromatic core, polarization is constant and makes small influence in the relative cation-binding energies. However, when the aromatic core changes polarization contributions might be very different. We found that the generalized molecular interaction potential with polarization is a very fast and powerful tool for the prediction of cation binding of aromatic compounds.
Resumo:
We report 13C magic angle spinning NMR observation of photochemically induced dynamic nuclear spin polarization (photo- CIDNP) in the reaction center (RC) of photosystem II (PS2). The light-enhanced NMR signals of the natural abundance 13C provide information on the electronic structure of the primary electron donor P680 (chlorophyll a molecules absorbing around 680 nm) and on the pz spin density pattern in its oxidized form, P680⨥. Most centerband signals can be attributed to a single chlorophyll a (Chl a) cofactor that has little interaction with other pigments. The chemical shift anisotropy of the most intense signals is characteristic for aromatic carbon atoms. The data reveal a pronounced asymmetry of the electronic spin density distribution within the P680⨥. PS2 shows only a single broad and intense emissive signal, which is assigned to both the C-10 and C-15 methine carbon atoms. The spin density appears shifted toward ring III. This shift is remarkable, because, for monomeric Chl a radical cations in solution, the region of highest spin density is around ring II. It leads to a first hypothesis as to how the planet can provide itself with the chemical potential to split water and generate an oxygen atmosphere using the Chl a macroaromatic cycle. A local electrostatic field close to ring III can polarize the electronic charge and associated spin density and increase the redox potential of P680 by stabilizing the highest occupied molecular orbital, without a major change of color. This field could be produced, e.g., by protonation of the keto group of ring V. Finally, the radical cation electronic structure in PS2 is different from that in the bacterial RC, which shows at least four emissive centerbands, indicating a symmetric spin density distribution over the entire bacteriochlorophyll macrocycle.
Resumo:
The cell adhesion molecule E-cadherin has been implicated in maintaining the polarized phenotype of epithelial cells and suppression of invasiveness and motility of carcinoma cells. Na,K-ATPase, consisting of an α- and β-subunit, maintains the sodium gradient across the plasma membrane. A functional relationship between E-cadherin and Na,K-ATPase has not previously been described. We present evidence that the Na,K-ATPase plays a crucial role in E-cadherin–mediated development of epithelial polarity, and suppression of invasiveness and motility of carcinoma cells. Moloney sarcoma virus-transformed Madin-Darby canine kidney cells (MSV-MDCK) have highly reduced levels of E-cadherin and β1-subunit of Na,K-ATPase. Forced expression of E-cadherin in MSV-MDCK cells did not reestablish epithelial polarity or inhibit the invasiveness and motility of these cells. In contrast, expression of E-cadherin and Na,K-ATPase β1-subunit induced epithelial polarization, including the formation of tight junctions and desmosomes, abolished invasiveness, and reduced cell motility in MSV-MDCK cells. Our results suggest that E-cadherin–mediated cell-cell adhesion requires the Na,K-ATPase β-subunit's function to induce epithelial polarization and suppress invasiveness and motility of carcinoma cells. Involvement of the β1-subunit of Na,K-ATPase in the polarized phenotype of epithelial cells reveals a novel link between the structural organization and vectorial ion transport function of epithelial cells.
Resumo:
Solid-state nuclear magnetic resonance relaxation experiments were used to study the rigidity and spatial proximity of polymers in sugar beet (Beta vulgaris) cell walls. Proton T1ρ decay and cross-polarization patterns were consistent with the presence of rigid, crystalline cellulose microfibrils with a diameter of approximately 3 nm, mobile pectic galacturonans, and highly mobile arabinans. A direct-polarization, magic-angle-spinning spectrum recorded under conditions adapted to mobile polymers showed only the arabinans, which had a conformation similar to that of beet arabinans in solution. These cell walls contained very small amounts of hemicellulosic polymers such as xyloglucan, xylan, and mannan, and no arabinan or galacturonan fraction closely associated with cellulose microfibrils, as would be expected of hemicelluloses. Cellulose microfibrils in the beet cell walls were stable in the absence of any polysaccharide coating.
Resumo:
Eukaryotic cells contain many actin-interacting proteins, including the α-actinins and the fimbrins, both of which have actin cross-linking activity in vitro. We report here the identification and characterization of both an α-actinin-like protein (Ain1p) and a fimbrin (Fim1p) in the fission yeast Schizosaccharomyces pombe. Ain1p localizes to the actomyosin-containing medial ring in an F-actin–dependent manner, and the Ain1p ring contracts during cytokinesis. ain1 deletion cells have no obvious defects under normal growth conditions but display severe cytokinesis defects, associated with defects in medial-ring and septum formation, under certain stress conditions. Overexpression of Ain1p also causes cytokinesis defects, and the ain1 deletion shows synthetic effects with other mutations known to affect medial-ring positioning and/or organization. Fim1p localizes both to the cortical actin patches and to the medial ring in an F-actin–dependent manner, and several lines of evidence suggest that Fim1p is involved in polarization of the actin cytoskeleton. Although a fim1 deletion strain has no detectable defect in cytokinesis, overexpression of Fim1p causes a lethal cytokinesis defect associated with a failure to form the medial ring and concentrate actin patches at the cell middle. Moreover, an ain1 fim1 double mutant has a synthetical-lethal defect in medial-ring assembly and cell division. Thus, Ain1p and Fim1p appear to have an overlapping and essential function in fission yeast cytokinesis. In addition, protein-localization and mutant-phenotype data suggest that Fim1p, but not Ain1p, plays important roles in mating and in spore formation.
Resumo:
Fix an isogeny class
Resumo:
This paper reviews the fundamental concepts and basic theory of polarization mode dispersion (PMD) in optical fibers. It introduces a unified notation and methodology to link the various views and concepts in Jones space and Stokes space. The discussion includes the relation between Jones vectors and Stokes vectors, rotation matrices, the definition and representation of PMD vectors, the laws of infinitesimal rotation, and the rules for PMD vector concatenation.
Resumo:
Let E be a modular elliptic curve over ℚ, without complex multiplication; let p be a prime number where E has good ordinary reduction; and let F∞ be the field obtained by adjoining to ℚ all p-power division points on E. Write G∞ for the Galois group of F∞ over ℚ. Assume that the complex L-series of E over ℚ does not vanish at s = 1. If p ⩾ 5, we make a precise conjecture about the value of the G∞-Euler characteristic of the Selmer group of E over F∞. If one makes a standard conjecture about the behavior of this Selmer group as a module over the Iwasawa algebra, we are able to prove our conjecture. The crucial local calculations in the proof depend on recent joint work of the first author with R. Greenberg.