904 resultados para plasma protein


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibrogenic stresses promote progression of renal tubulointerstitial fibrosis, disparately affecting survival, proliferation and trans-differentiation of intrinsic renal cell populations through ill-defined biomolecular pathways. We investigated the effect of fibrogenic stresses on the activation of cell-specific mitogen-activated protein kinase (MAPK) in renal fibroblast, epithelial and endothelial cell populations. The relative outcomes (cell death, proliferation, trans-differentiation) associated with activation or inhibition of extracellular-regulated protein kinase (ERK) or stress activated/c-Jun N terminal kinase (JNK) were analysed in each renal cell population after challenge with oxidative stress (1 mmol/L H2O2), transforming growth factor-beta1 (TGF-beta1, 10 ng/mL) or tumour necrosis factor-alpha (TNF-alpha, 50 ng/mL) over 0-20 h. Apoptosis increased significantly in all cell types after oxidative stress (P < 0.05). In fibroblasts, oxidative stress caused the activation of ERK (pERK) but not JNK (pJNK). Inhibition of ERK by PD98059 supported its role in a fibroblast death pathway. In epithelial and endothelial cells, oxidative stress-induced apoptosis was preceded by early induction of pERK, but its inhibition did not support a pro-apoptotic role. Early ERK activity may be conducive to their survival or promote the trans-differentiation of epithelial cells. In epithelial and endothelial cells, oxidative stress induced pJNK acutely. Pretreatment with SP600125 (JNK inhibitor) verified its pro-apoptotic activity only in epithelial cells. Transforming growth factor-beta1 did not significantly alter mitosis or apoptosis in any of the cell types, nor did it alter MAPK activity. Tumor necrosis factor-alpha caused increased apoptosis with no associated change in MAPK activity. Our results demonstrate renal cell-specific differences in the activation of ERK and JNK following fibrotic insult, which may be useful for targeting excessive fibroblast proliferation in chronic fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the hallmarks of progressive renal disease is the development of tubulointerstitial fibrosis. This is frequently preceded by macrophage infiltration, raising the possibility that macrophages relay fibrogenic signals to resident tubulointerstitial cells. The aim of this study was to investigate the potentially fibrogenic role of interleukin-1beta (IL-1beta), a macrophage-derived inflammatory cytokine, on cortical fibroblasts (CFs). Primary cultures of human renal CFs were established and incubated for 24 hours in the presence or absence of IL-1beta. We found that IL-1beta significantly stimulated DNA synthesis (356.7% +/- 39% of control, P <.003), fibronectin secretion (261.8 +/- 11% of control, P <.005), collagen type 1 production, (release of procollagen type 1 C-terminal-peptide, 152.4% +/- 26% of control, P <.005), transforming growth factor-beta (TGF-beta) secretion (211% +/- 37% of control, P <.01), and nitric oxide (NO) production (342.8% +/- 69% of control, P <.002). TGF-beta (1 ng/mL) and the phorbol ester phorbol 12-myristate 13-acetate (PMA, 25 nmol/L) produced fibrogenic effects similar to those of IL-1beta. Neither a NO synthase inhibitor (N(G)-methyl-l-arginine, 1 mmol/L) nor a protein kinase C (PKC) inhibitor (bis-indolylmaleimide 1, 1 micromol/L) altered the enhanced level of fibronectin secretion or DNA synthesis seen in response to IL-1beta treatment. However, addition of a TGF-beta-neutralizing antibody significantly reduced IL-1beta-induced fibronectin secretion (IL-1beta + IgG, 262% +/- 72% vs IL-1beta + alphaTGF-beta 156% +/- 14%, P <.02), collagen type 1 production (IL-1beta + IgG, 176% +/- 28% vs IL-1beta + alphaTGF-beta, 120% +/- 14%, P <.005) and abrogated IL-1beta-induced DNA synthesis (245% +/- 49% vs 105% +/- 21%, P <.005). IL-1beta significantly stimulated CF DNA synthesis and production of fibronectin, collagen type 1, TGFbeta, and NO. The fibrogenic and proliferative action of IL-1beta on CF appears not to involve activation of PKC or production of NO but is at least partly TGFbeta-dependent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Burn-wound healing is a dynamic, interactive process involving a number of cellular and molecular events and is characterized by inflammation, granulation tissue formation, re-epithelialization, and tissue remodeling (Greenhalgh, 2002; Linares, 2002). Unlike incisional-wound healing, it also requires extensive re-epithelialization due to a predominant horizontal loss of tissue and often heals with abnormal scarring when burns involve deep dermis. The early mammalian fetus has the remarkable ability to regenerate normal epidermis and dermis and to heal dermal incisional wounds with no signs of scarring. Extensive research has indicated that scarless healing appears to be intrinsic to fetal skin (McCallion and Ferguson, 1996; Ferguson and O’Kane, 2004). Previously, we reported a fetal burn model, in which 80-day-old ovine fetuses (gestation¼ 145–153 days) healed deep dermal partial thickness burns without scars, whereas postnatal lambs healed equal depth burns with significant scarring (Cuttle et al., 2005; Fraser et al., 2005). This burn model provided early evidence that fetal skin has the capacity to repair and restore dermal horizontal loss, not just vertical injuries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction The culture in many team sports involves consumption of large amounts of alcohol after training/competition. The effect of such a practice on recovery processes underlying protein turnover in human skeletal muscle are unknown. We determined the effect of alcohol intake on rates of myofibrillar protein synthesis (MPS) following strenuous exercise with carbohydrate (CHO) or protein ingestion. Methods In a randomized cross-over design, 8 physically active males completed three experimental trials comprising resistance exercise (8×5 reps leg extension, 80% 1 repetition maximum) followed by continuous (30 min, 63% peak power output (PPO)) and high intensity interval (10×30 s, 110% PPO) cycling. Immediately, and 4 h post-exercise, subjects consumed either 500 mL of whey protein (25 g; PRO), alcohol (1.5 g·kg body mass−1, 12±2 standard drinks) co-ingested with protein (ALC-PRO), or an energy-matched quantity of carbohydrate also with alcohol (25 g maltodextrin; ALC-CHO). Subjects also consumed a CHO meal (1.5 g CHO·kg body mass−1) 2 h post-exercise. Muscle biopsies were taken at rest, 2 and 8 h post-exercise. Results Blood alcohol concentration was elevated above baseline with ALC-CHO and ALC-PRO throughout recovery (P<0.05). Phosphorylation of mTORSer2448 2 h after exercise was higher with PRO compared to ALC-PRO and ALC-CHO (P<0.05), while p70S6K phosphorylation was higher 2 h post-exercise with ALC-PRO and PRO compared to ALC-CHO (P<0.05). Rates of MPS increased above rest for all conditions (~29–109%, P<0.05). However, compared to PRO, there was a hierarchical reduction in MPS with ALC-PRO (24%, P<0.05) and with ALC-CHO (37%, P<0.05). Conclusion We provide novel data demonstrating that alcohol consumption reduces rates of MPS following a bout of concurrent exercise, even when co-ingested with protein. We conclude that alcohol ingestion suppresses the anabolic response in skeletal muscle and may therefore impair recovery and adaptation to training and/or subsequent performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integrin-linked kinase (ILK) and p38MAPK are protein kinases that transduce extracellular signals regulating cell migration and actin cytoskeletal organization. ILK-dependent regulation of p38MAPK is critical for mammalian kidney development and in smooth muscle cell migration, however, specific p38 isoforms has not been previously examined in ILK-regulated responses. Signaling by ILK and p38MAPK is often dysregulated in bladder cancer, and here we report a strong positive correlation between protein levels of ILK and p38β, which is the predominant isoform found in bladder cancer cells, as well as in patient-matched normal bladder and tumor samples. Knockdown by RNA interference of either p38β or ILK disrupts serum-induced, Rac1-dependent migration and actin cytoskeletal organization in bladder cancer cells. Surprisingly, ILK knockdown causes the selective reduction in p38β cellular protein level, without inhibiting p38β messenger RNA (mRNA) expression. The loss of p38β protein in ILK-depleted cells is partially rescued by the 26S proteasomal inhibitor MG132. Using co-precipitation and bimolecular fluorescent complementation assays, we find that ILK selectively forms cytoplasmic complexes with p38β. In situ proximity ligation assays further demonstrate that serum-stimulated assembly of endogenous ILK–p38β complexes is sensitive to QLT-0267, a small molecule ILK kinase inhibitor. Finally, inhibition of ILK reduces the amplitude and period of serum-induced activation of heat shock protein 27 (Hsp27), a target of p38β implicated in actin cytoskeletal reorganization. Our work identifies Hsp27 as a novel target of ILK–p38β signaling complexes, playing a key role in bladder cancer cell migration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, we defined a new syndromic form of X-linked mental retardation in a 4-generation family with a unique clinical phenotype characterized by mild mental retardation, choreoathetosis, and abnormal behavior (MRXS10). Linkage analysis in this family revealed a candidate region of 13.4 Mb between markers DXS1201 and DXS991 on Xp11; therefore, mutation analysis was performed by direct sequencing in most of the 135 annotated genes located in the region. The gene (HADH2) encoding L-3-hydroxyacyl-CoA dehydrogenase II displayed a sequence alteration (c.574 C-->A; p.R192R) in all patients and carrier females that was absent in unaffected male family members and could not be found in 2,500 control X chromosomes, including in those of 500 healthy males. The silent C-->A substitution is located in exon 5 and was shown by western blot to reduce the amount of HADH2 protein by 60%-70% in the patient. Quantitative in vivo and in vitro expression studies revealed a ratio of splicing transcript amounts different from those normally seen in controls. Apparently, the reduced expression of the wild-type fragment, which results in the decreased protein expression, rather than the increased amount of aberrant splicing fragments of the HADH2 gene, is pathogenic. Our data therefore strongly suggest that reduced expression of the HADH2 protein causes MRXS10, a phenotype different from that caused by 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency, which is a neurodegenerative disorder caused by missense mutations in this multifunctional protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE. Phospholipids are a major component of lens fiber cells and influence the activity of membrane proteins. Previous investigations of fatty acid uptake by the lens are limited. The purpose of the present study was thus to determine whether exogenous fatty acids could be taken up by the rat lens and incorporated into molecular phospholipids. METHODS. Lenses were incubated with fluorescently labeled palmitic acid and then analyzed by confocal microscopy. Concurrently, lenses incubated with either fluorescently labeled palmitic acid or the more physiologically relevant (13)C(18)-oleic acid were sectioned into nuclear and cortical regions and analyzed by highly sensitive and structurally selective electrospray ionization tandem mass spectrometry techniques. RESULTS. The detection of fluorescently labeled palmitic acid, even after 16 hours of incubation, was limited to approximately the outer 25% to 30% of the rat lens. Mass spectrometry also revealed the presence of free (13)C(18)-oleic acid in the cortex but not the nucleus. No evidence could be found for incorporation of fluorescently labeled palmitic acid into phospholipids; however, a low level of (13)C(18)-oleic acid incorporation into phosphatidylethanolamine (PE), specifically PE (PE 16:0/(13)C(18) 18:1) was detected in the lens cortex after 16 hours. CONCLUSIONS. These data demonstrate that uptake of exogenous (e.g., dietary fatty acids) by the lens and their incorporation into phospholipids is minimal, most likely occurring only during de novo synthesis in the outermost region of the lens. This finding adds support to the hypothesis that once synthesized there is no active remodeling or turnover of fiber cell phospholipids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virus-based transgene expression systems have become particularly valuable for recombinant protein production in plants. The dual-module in-plant activation (INPACT) expression platform consists of a uniquely designed split-gene cassette incorporating the cis replication elements of Tobacco yellow dwarf geminivirus (TYDV) and an ethanol-inducible activation cassette encoding the TYDV Rep and RepA replication-associated proteins. The INPACT system is essentially tailored for recombinant protein production in stably transformed plants and provides both inducible and high-level transient transgene expression with the potential to be adapted to diverse crop species. The construction of a novel split-gene cassette, the inducible nature of the system and the ability to amplify transgene expression via rolling-circle replication differentiates this system from other DNA- and RNA-based virus vector systems used for stable or transient recombinant protein production in plants. Here we provide a detailed protocol describing the design and construction of a split-gene INPACT cassette, and we highlight factors that may influence optimal activation and amplification of gene expression in transgenic plants. By using Nicotiana tabacum, the protocol takes 6-9 months to complete, and recombinant proteins expressed using INPACT can accumulate to up to 10% of the leaf total soluble protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Large segmental defects in bone do not heal well and present clinical challenges. This study investigated modulation of the mechanical environment as a means of improving bone healing in the presence of bone morphogenetic protein (BMP)-2. Although the influence of mechanical forces on the healing of fractures is well established, no previous studies, to our knowledge, have described their influence on the healing of large segmental defects. We hypothesized that bone-healing would be improved by initial, low-stiffness fixation of the defect, followed by high-stiffness fixation during the healing process. We call this reverse dynamization. Methods A rat model of a critical-sized femoral defect was used. External fixators were constructed to provide different degrees of stiffness and, importantly, the ability to change stiffness during the healing process in vivo. Healing of the critical-sized defects was initiated by the implantation of 11 mg of recombinant human BMP (rhBMP)-2 on a collagen sponge. Groups of rats receiving BMP-2 were allowed to heal with low, medium, and high-stiffness fixators, as well as under conditions of reverse dynamization, in which the stiffness was changed from low to high at two weeks. Healing was assessed at eight weeks with use of radiographs, histological analysis, microcomputed tomography, dual x-ray absorptiometry, and mechanical testing. Results Under constant stiffness, the low-stiffness fixator produced the best healing after eight weeks. However, reverse dynamization provided considerable improvement, resulting in a marked acceleration of the healing process by all of the criteria of this study. The histological data suggest that this was the result of intramembranous, rather than endochondral, ossification. Conclusions Reverse dynamization accelerated healing in the presence of BMP-2 in the rat femur and is worthy of further investigation as a means of improving the healing of large segmental bone defects. Clinical Relevance These data provide the basis of a novel, simple, and inexpensive way to improve the healing of critical-sized defects in long bones. Reverse dynamization may also be applicable to other circumstances in which bonehealing is problematic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To determine whether locally applied tobramycin influences the ability of recombinant human bone morphogenetic protein 2 (rhBMP-2) to heal a segmental defect in the rat femur. Methods The influence of tobramycin on the osteogenic differentiation of mesenchymal stem cells was first evaluated in vitro. For the subsequent, in vivo experiments, a 5-mm segmental defect was created in the right femur of each of 25 Sprague-Dawley rats and stabilized with an external fixator and four Kirschner wires. Rats were divided in four groups: empty control, tobramycin (11 mg)/absorbable collagen sponge, rhBMP-2 (11 μg)/absorbable collagen sponge, and rhBMP-2/absorbable collagen sponge with tobramycin. Bone healing was monitored by radiography at 3 and 8 weeks. Animals were euthanized at 8 weeks and the properties of the defect were compared with the intact contralateral femur. Bone formation in the defect region was assessed by dual-energy x-ray absorptiometry, microcomputed tomography, histology, and mechanical testing. Results Tobramycin exerted a dose-dependent inhibition of alkaline phosphatase induction and calcium deposition by mesenchymal stem cells cultured under osteogenic conditions. The inhibition was reversed in the presence of 500 ng/mL of rhBMP-2. Segmental defects in the rat femora failed to heal in the absence of rhBMP-2. Tobramycin exerted no inhibitory effects on the ability of rhBMP-2 to heal these defects and increased the bone area of the defects treated with rhBMP-2. Data obtained from all other parameters of healing, including dual-energy x-ray absorptiometry, microcomputed tomography, histology, and mechanical testing, were unaffected by tobramycin. Conclusions Although our in vitro results suggested that tobramycin inhibits the osteogenic differentiation of mesenchymal stem cells, this could be overcome by rhBMP-2. Tobramycin did not impair the ability of rhBMP-2 to heal critical-sized femoral defects in rats. Indeed, bone area was increased by nearly 20% in the rhBMP-2 group treated with tobramycin. This study shows that locally applied tobramycin can be used in conjunction with rhBMP-2 to enhance bone formation at fracture sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intrinsically disordered proteins (IDPs) are a relatively recently defined class of proteins which, under native conditions, lack a unique tertiary structure whilst maintaining essential biological functions. Functional classification of IDPs have implicated such proteins as being involved in various physiological processes including transcription and translation regulation, signal transduction and protein modification. Actinidia DRM1 (Ade DORMANCY ASSOCIATED GENE 1), represents a robust dormancy marker whose mRNA transcript expression exhibits a strong inverse correlation with the onset of growth following periods of physiological dormancy. Bioinformatic analyses suggest that DRM1 is plant specific and highly conserved at both the nucleotide and protein levels. It is predicted to be an intrinsically disordered protein with two distinct highly conserved domains. Several Actinidia DRM1 homologues, which align into two distinct Actinidia-specific families, Type I and Type II, have been identified. No candidates for the Arabidopsis DRM1-Homologue (AtDRM2) an additional family member, has been identified in Actinidia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The migration of three human prostate tumor epithelial cell lines (TSU-pr1, PC-3, DU-145) in response to secreted protein from a human prostate stromal cell line was investigated by using the modified blind-well Boyden chamber assay. Migrated cells were quantified by spectrophotometrically measuring the concentration of crystal violet stain extracted from their nuclei. Cell number was correlated linearly with the concentration of extracted crystal violet stain. All three tumor cell lines showed intrinsic migratory ability in the absence of chemoattractants, such that approximately 1-7% of plated cells migrated across the filter of the Boyden chambers during a 5-h incubation period. Prostate tumor cell migration was significantly enhanced (3-13-fold) in response to stromal cell secretory protein in a dose-dependent manner, whereas bovine serum albumin had no effect on stimulating tumor cell migration. Immunoprecipitation of the stromal cell secreted protein with a nerve growth factor antibody partially and significantly reduced its stimulatory activity for tumor cell migration. A Zigmond-Hirsch matrix assay of tumor cell migration in response to various concentration gradients of stromal cell secreted protein demonstrated both chemotaxis and chemokinesis by all three cell lines. These results are consistent with the stromal cell secretory protein stimulation of chemokinetic tumor cell migration through the capsule of the prostate. Outside of the prostate gland metastasis of tumor cells may occur by chemotaxis to preferential sites containing chemoattractants similar to or related to maintenance factors that can substitute for components of stromal cell secretory protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both the integrin and insulin-like growth factor binding protein (IGFBP) families independently play important roles in modulating tumor cell growth and progression. We present evidence for a specific cell surface localization and a bimolecular interaction between the αvβ3 integrin and IGFBP-2. The interaction, which could be specifically perturbed using vitronectin and αvβ3 blocking antibodies, was shown to modulate IGF-mediated cellular migration responses. Moreover, this interaction was observed in vivo and correlated with reduced tumor size of the human breast cancer cells, MCF-7β3, which overexpressed the αvβ3 integrin. Collectively, these results indicate that αvβ3 and IGFBP-2 act cooperatively in a negative regulatory manner to reduce tumor growth and the migratory potential of breast cancer cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breast cancer metastasis to the bone occurs frequently, causing numerous complications including severe pain, fracture, hypercalcemia, and paralysis. Despite its prevalence and severity, few effective therapies exist. To address this, we examined whether the heat shock protein 90 (Hsp90) inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), would be efficacious in inhibiting breast cancer metastasis to bone. Utilizing the human breast cancer subline, MDA-MB-231SA, previously in vivo selected for its enhanced ability to generate osteolytic bone lesions, we determined that 17-AAG potently inhibited its in vitro proliferation and migration. Moreover, 17-AAG significantly reduced MDA-MB-231SA tumor growth in the mammary-fat pad of nude mice. Despite these findings, 17-AAG enhanced the incidence of bone metastasis and osteolytic lesions following intracardiac inoculation in the nude mouse. Consistent with these findings, 17-AAG enhanced osteoclast formation 2- to 4-fold in mouse bone marrow/osteoblast cocultures, receptor activator of nuclear factor κB ligand (BANKL)-stimulated bone marrow, and RAW264.7 cell models of in vitro osteoclastogenesis. Moreover, the drug enhanced osteoclastogenesis in human cord blood progenitor cells, demonstrating that its effects were not limited to mouse models. In addition to 17-AAG, other Hsp90 inhibitors, such as radicicol and herbimycin A, also enhanced osteoclastogenesis. A pro-osteolytic action of 17-AAG independent of tumor presence was also determined in vivo, in which 17-AAG-treated tumor-naive mice had reduced trabecular bone volume with an associated increase in osteoclast number. Thus, HSP90 inhibitors can stimulate osteoclast formation, which may underlie the increased incidence of osteolysis and skeletal tumor incidence causedby 17-AAG in vivo. These data suggest an important contraindication to the Hsp90 targeted cancer therapy currently undergoing clinical trial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expression of the intermediate filament protein vimentin, and loss of the cellular adhesion protein uvomorulin (E-cadherin) have been associated with increased invasiveness of established human breast cancer cell lines in vitro and in vivo. In the current study, we have further examined these relationships in oncogenically transformed human mammary epithelial cells. A normal human mammary epithelial strain, termed 184, was previously immortalized with benzo[a]pyrene, and two distinct sublines were derived (A1N4 and 184B5). These sublines were infected with retroviral vectors containing a single or two oncogenes of the nuclear, cytoplasmic, and plasma membrane-associated type (v-rasH, v-rasKi, v -mos, SV40T and c -myc). All infectants have been previously shown to exhibit some aspects of phenotypic transformation. In the current study, cellular invasiveness was determined in vitro using Matrigel, a reconstituted basement membrane extract. Lineage-specific differences were observed with respect to low constitutive invasiveness and invasive changes after infection with ras, despite similar ras-induced transformation of each line. Major effects on cellular invasiveness were observed after infection of the cells with two different oncogenes (v-rasH + SV40T and v -rasH + v -mos). In contrast, the effects of single oncogenes were only modest or negligible. All oncogenic infectants demonstrated increased attachment to laminin, but altered secretion of the 72 kDa and 92 kDa gelatinases was not associated with any aspect of malignant progression. Each of the two highly invasive double oncogene transformants were vimentinpositive and uvomorulin-negative, a phenotype indicative of the epithelial-mesenchymal transition (EMT) previously associated with invasiveness of established human breast cancer cell lines. Weakly invasive untransformed mammary epithelial cells in this study were positive for both vimentin and uvomorulin, suggesting that uvomorulin may over-ride the otherwise vimentin-associated invasiveness.