953 resultados para plant pathogen interaction
Resumo:
Sun exposure is the main environmental risk factor for melanoma, but the timing of exposure during life that confers increased risk is controversial. Here we provide the first report of the association between lifetime and age-specific cumulative ultraviolet exposure and cutaneous melanoma in Queensland, Australia, an area of high solar radiation, and examine the association separately for families at high, intermediate and low familial melanoma risk. Subjects were a population-based sample of melanoma cases diagnosed and registered in Queensland between 1982 and 1990 and their relatives. The analysis included 1,263 cases and relatives with confirmed cutaneous melanoma and 3,111 first-degree relatives without melanoma as controls. Data an lifetime residence and sun exposure, family history and other melanoma risk factors were collected by a mailed questionnaire. Using conditional multiple logistic regression with stratification by family, cumulative sun exposure in childhood and in adulthood after age 20 was significantly associated with melanoma, with estimated relative risks of 1.15 per 5,000 minimal erythemal doses (MEDs) from age 5 to 12 years, and 1.52 per 5 MEDs/day from age 20. There was no association with sun exposure in families at high familial melanoma risk. History of nonmelanoma skin cancer (relative risk [RR] = 1.26) and multiple sunburns (RR = 1.31) were significant risk factors. These findings indicate that sun exposure in childhood and in adulthood are important determinants of melanoma but not in those rare families with high melanoma susceptibility, in which genetic factors are likely to be more important. (C) 2002 Wiley-Liss, Inc.
Resumo:
In the carnivorous plant family Lentibulariaceae, the bladderwort lineage (Utricularia and Genlisea) is substantially more species-rich and morphologically divergent than its sister lineage, the butterworts (Pinguicula). Bladderworts have a relaxed body plan that has permitted the evolution of terrestrial, epiphytic, and aquatic forms that capture prey in intricately designed suction bladders or corkscrew-shaped lobster-pot traps. In contrast, the flypaper-trapping butterworts maintain vegetative structures typical of angiosperms. We found that bladderwort genomes evolve significantly faster across seven loci (the trnL intron, the second trnL exon, the trnL-F intergenic spacer, the rps16 intron, rbcL, coxI, and 5.8S rDNA) representing all three genomic compartments. Generation time differences did not show a significant association. We relate these findings to the contested speciation rate hypothesis, which postulates a relationship between increased nucleotide substitution and increased cladogenesis. (C) 2002 The Willi Hennig Society.
Resumo:
We evaluated the efficiency of callus induction and plantlet regeneration from hypocotyl explants of broccoli (Brassica oleracea var. italica). The cultivars were ‘Marathon’, ‘Greenbelt’, and ‘Shogun’. Transformation success was not affected by the presence of tobacco feeder-cell layers on the culture media. The frequency of shoot regeneration was greater from 10-d-old hypocotyls than from 14-d-old hypocotyls. Both ‘Marathon’ and ‘Greenbelt’ had higher potentials for tissue regeneration than did ‘Shogun’. We found that for transformation selection, the optimum concentration was either 50 mg/L kanamycin or 100 mg/L genetkin.
Resumo:
Ascochyta blight, caused by Ascochyta lentis , is one of the most globally important diseases of lentil. Breeding for host resistance has been suggested as an efficient means to control this disease. This paper summarizes existing studies of the characteristics and control of Ascochyta blight in lentil, genetics of resistance to Ascochyta blight and genetic variations among pathogen populations (isolates). Breeding methods for control of the disease are discussed. Six pathotypes of A. lentis have been reported. Many resistant cultivars/lines have been identified in both cultivated and wild lentil. Resistance to Ascochyta blight in lentil is mainly under the control of major genes, but minor genes also play a role. Current breeding programmes are based on crossing resistant and high-yielding cultivars and multilocation testing. Gene pyramiding, exploring slow blighting and partial resistance, and using genes present in wild relatives will be the methods used in the future. Identification of more sources of resistance genes, good characterization of the host-pathogen system, and identification of molecular markers tightly linked to resistance genes are suggested as the key areas for future study.
Resumo:
Pearl millet landraces from Rajasthan, India, yield significantly less than improved cultivars under optimum growing conditions, but not under stressed conditions. To successfully develop a simulation model for pearl millet, capable of capturing such genotype x environment (G x E) interactions for grain yield, we need to understand the causes of the observed yield interaction. The aim of this paper is to quantify the key parameters that determine the accumulation and partitioning of biomass: the,light extinction coefficient, radiation use efficiency (RUE), pattern of dry matter allocation to the leaf blades, the determination of grain number, and the rate and duration of dry matter accumulation into individual grains. We used data on improved cultivars and landraces, obtained from both published and unpublished sources collected at ICRISAT, Patancheru, India. Where possible, the effects of cultivar and axis (main shoot vs. tillers) on these parameters were analysed, as previous research suggested that G x E interactions for grain yield are associated with differences in tillering habit. Our results indicated there were no cultivar differences in extinction coefficient, RUE, and biomass partitioning before anthesis, and differences between axes in biomass partitioning were negligible. This indicates there was no basis for cultivar differences in the potential grain yield. Landraces, however, produced consistently less grain yield for a given rate of dry matter accumulation at anthesis than did improved cultivars. This was caused by a combination of low grain number and small grain size. The latter was predominantly due to a lower grain growth rate, as genotypic differences in the duration of grain filling were relatively small. Main shoot and tillers also had a similar duration of grain filling. The low grain yield of the landraces was associated with profuse nodal tillering, supporting the hypothesis that grain yield was below the potential yield that could be supported by assimilate availability. We hypothesise this is a survival strategy, which enhances the prospects to escape the effects of stress around anthesis. (C) 2002 E.J. van Oosterom. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Features of the history of the International Grassland Congress are mentioned. Aspects of a number of failed themes in grassland science are described with respect to molecular biology, intensive systems of ruminant production, carbohydrate use in plant growth, plant succession and range condition, and stocking method. Future expectations are focused on meeting a balance of objectives, maintaining reductionist science, taking new initiatives in plant improvement and in the development of animal production systems, and reducing barriers to international trade. The adoption of grassland science depends upon the growth of new learning, especially through cyclical interaction between scientists and farmers.
Resumo:
Two new crosses involving four races (races 7, 16, 17, and 25) of the soybean root and stem rot pathogen Phytophthora sojae were established (7/16 cross; 17/25 cross). An F-2 Population derived from each cross was used to determine the genetic basis of avirulence towards 11 different resistance genes in soybean. Avirulence was found to be dominant and determined by a single locus for Avr1b, 1d, 1k, 3b, 4, and 6, as expected for a simple gene-for-gene model. We also observed several cases of segregation, inconsistent with a single dominant gene being solely responsible for avirulence, which suggests that the genetic background of the different crosses can affect avirulence. Avr4 and 6 cosegregated in both the 7/16 and 17/25 crosses and, in the 7/16 cross, Avr1b and 1k were closely linked. Information from segregating RAPD, RFLP, and AFLP markers screened on F-2 progeny from the two new crosses and two crosses described previously (a total of 212 F-2 individuals, 53 from each cross) were used to construct an integrated genetic linkage map of P. sojae. This revised genetic linkage map consists of 386 markers comprising 35 RFLP, 236 RAPD, and 105 AFLP markers, as well as 10 avirulence genes. The map is composed of 21 major linkage groups and seven minor linkage groups covering a total map distance of 1640.4 cM. (C) 2002 Elsevier Science (USA). All rights reserved.
Resumo:
Developments in computer and three dimensional (3D) digitiser technologies have made it possible to keep track of the broad range of data required to simulate an insect moving around or over the highly heterogeneous habitat of a plant's surface. Properties of plant parts vary within a complex canopy architecture, and insect damage can induce further changes that affect an animal's movements, development and likelihood of survival. Models of plant architectural development based on Lindenmayer systems (L-systems) serve as dynamic platforms for simulation of insect movement, providing ail explicit model of the developing 3D structure of a plant as well as allowing physiological processes associated with plant growth and responses to damage to be described and Simulated. Simple examples of the use of the L-system formalism to model insect movement, operating Lit different spatial scales-from insects foraging on an individual plant to insects flying around plants in a field-are presented. Such models can be used to explore questions about the consequences of changes in environmental architecture and configuration on host finding, exploitation and its population consequences. In effect this model is a 'virtual ecosystem' laboratory to address local as well as landscape-level questions pertinent to plant-insect interactions, taking plant architecture into account. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Models of plant architecture allow us to explore how genotype environment interactions effect the development of plant phenotypes. Such models generate masses of data organised in complex hierarchies. This paper presents a generic system for creating and automatically populating a relational database from data generated by the widely used L-system approach to modelling plant morphogenesis. Techniques from compiler technology are applied to generate attributes (new fields) in the database, to simplify query development for the recursively-structured branching relationship. Use of biological terminology in an interactive query builder contributes towards making the system biologist-friendly. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Plant toxins are substances produced and secreted by plants to defend themselves against predators. In a broad sense, this includes all substances that have a toxic effect on targeted organisms, whether they are microbes, other plants, insects, or higher animals. Plant toxins have a diverse range of structures, from small organic molecules through to proteins. This review gives an overview of the various classes of plant toxins but focuses on an interesting class of protein-based plant toxins containing a cystine knot motif. This structural motif confers exceptional stability on proteins containing it and is associated with a wide range of biological activities. The biological activities and structural stability offer many potential applications in the pharmaceutical and agricultural fields. One particularly exciting prospect is in the use of protein-based plant toxins as molecular scaffolds for displaying pharmaceutically important bioactivities. Future applications of plant toxins are likely to involve genetic engineering techniques and molecular pharming approaches.
Resumo:
The relations among measures of attachment, spouse behavior, and marital satisfaction were assessed in a broad sample of 193 married couples, using both questionnaire and diary methods. Insecure attachment was associated with less favorable reports of spouse behavior, as assessed by diary checklists. Marital satisfaction was predicted by attachment treasures and reports of spouse behavior. The relation between attachment security and marital satisfaction was moderated, but not mediated, by reported spouse behavior. Specifically, insecure individuals' evaluations of their relationships were more reactive to recent spouse behavior, an effect that was especially marked for fearful participants and for those in longer-term marriages. Some gender differences in patterns of prediction were obtained. The results are discussed in terms of the working models associated with attachment styles, and the processes by which relationship satisfaction may be eroded over time.
Resumo:
A series of experiments were conducted in drought-prone northeast Thailand to examine the magnitude of yield responses of diverse genotypes to drought stress environments and to identify traits that may confer drought resistance to rainfed lowland rice. One hundred and twenty eight genotypes were grown under non-stress and four different types of drought stress conditions. Under severe drought conditions, the maintenance of PWP of genotypes played a significant role in determining final grain yield. Because of their smaller plant size (lower total dry matter at anthesis) genotypes that extracted less soil water during the early stages of the drought period, tended to maintain higher PWP and had a higher fertile panicle percentage, filled grain percentage and final grain yield than other genotypes. PWP was correlated with delay in flowering (r = -0.387) indicating that the latter could be used as a measure of water potential under stress. Genotypes with well-developed root systems extracted water too rapidly and experienced severe water stress at flowering. RPR which showed smaller coefficient of variation was more useful than root mass density in identifying genotypes with large root system. Under less severe and prolonged drought conditions, genotypes that could achieve higher plant dry matter at anthesis were desirable. They had less delay in flowering, higher grain yield and higher drought response index, indicating the importance of ability to grow during the prolonged stress period. Other shoot characters (osmotic potential, leaf temperature, leaf rolling, leaf death) had little effect on grain yield under different drought conditions. This was associated with a lack of genetic variation and difficulty in estimating trait values precisely. Under mild stress conditions (yield loss less than 50%), there was no significant relationship between the measured drought characters and grain yield. Under these mild drought conditions, yield is determined more by yield potential and phenotype than by drought resistant mechanisms per se. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The Tully Sugar Mill has collected information about sugarcane supplied for crushing from every block in the mill district from 1970 to 1999. Data from 1988 to 1999 were analysed to understand the extent of the variation in cane yield per hectare and commercial cane sugar in the Tully mill area. The key factors influencing the variation in cane yield and commercial cane sugar in this commercial environment were identified and the variance components computed using a restricted maximum likelihood methodology. Cane yield was predominantly influenced by the year in which it was harvested, the month when the crop was ratooned (month of harvest in the previous year) and the farm of origin. These variables were relatively more important than variety, age of crop or crop class (plant crop, first ratoon through to fourth or older ratoons) and fallowing practice (fallow or ploughout-replant). The month-of-ratooning effect was relatively stable from year-to-year. Commercial cane sugar was influenced by the year of harvest, the month of harvest and their interaction, in that the influence of the month of harvest varied from year to year. Variety and farm differences were also significant but accounted for a much lower portion of the variation in commercial cane sugar. An empirical model was constructed from the key factors that influenced commercial cane sugar and cane yield to quantify their combined influence on sugar yield (t/ha). This may be used to assist mill personnel to predict their activities more accurately, for example to calculate the impact of a late finish to the current harvest season on the following year's crop.
Resumo:
Diseases and insect pests are major causes of low yields of common bean (Phaseolus vulgaris L.) in Latin America and Africa. Anthracnose, angular leaf spot and common bacterial blight are widespread foliar diseases of common bean that also infect pods and seeds. One thousand and eighty-two accessions from a common bean core collection from the primary centres of origin were investigated for reaction to these three diseases. Angular leaf spot and common bacterial blight were evaluated in the field at Santander de Quilichao, Colombia, and anthracnose was evaluated in a screenhouse in Popayan, Colombia. By using the 15-group level from a hierarchical clustering procedure, it was found that 7 groups were formed with mainly Andean common bean accessions (Andean gene pool), 7 groups with mainly Middle American accessions (Middle American gene pool), while 1 group contained mixed accessions. Consistent with the theory of co-evolution, it was generally observed that accessions from the Andean gene pool were resistant to Middle American pathogen isolates causing anthracnoxe, while the Middle American accessions were resistant to pathogen isolates from the Andes. Different combinations of resistance patterns were found, and breeders can use this information to select a specific group of accessions on the basis of their need.