930 resultados para photothermal manipulation
Resumo:
This study describes the physicochemical properties and in vitro resistance to encrustation of solvent cast films composed of either poly(epsilon-caprolactone) (PCL), prepared using different ratios of high (50,000) to low (4000) (molecular weight) m.wt., or blends of PCL and the polymeric antimicrobial complex, poly(vinylpyrrolidone)-iodine (PVP-I). The incorporation of PVP-I offered antimicrobial activity to the biomaterials. Films were characterised in terms of mechanical (tensile analysis, dynamic mechanical thermal analysis) and surface properties (dynamic contact angle analysis, scanning electron microscopy), whereas degradation (at 37degreesC in PBS at pH 7.4) was determined gravimetrically. The resistance of the films to encrustation was evaluated using an in vitro encrustation model. Reductions in the ratio of high:low-m.wt. PCL significantly reduced the ultimate tensile strength, % elongation at break and the advancing contact angle of the films. These effects were attributed to alterations in the amorphous content and the more hydrophilic nature of the films. Conversely, there were no alterations in Young's modulus, the viscoelastic properties and glass-transition temperature. Incorporation of PVP-I did not affect the mechanical or rheological properties of the films, indicative of a limited interaction between the two polymers in the solid state. Manipulation of the high:low m.wt. ratio of PCL significantly altered the degradation of the films, most notably following longer immersion periods, and resistance to encrustation. Accordingly, maximum degradation and resistance to encrustation was observed with the biomaterial composed of 40:60 high:low m.wt. ratios of PCL; however, the mechanical properties of this system were considered inappropriate for clinical application. Films composed of either 50:50 or 60:40 ratio of high:low m.wt. PCL offered an appropriate compromise between physicochemical properties and resistance to encrustation. This study has highlighted the important usefulness of degradable polymer systems as ureteral biomaterials
Resumo:
Cooling of mechanical resonators is currently a popular topic in many fields of physics including ultra-high precision measurements, detection of gravitational waves and the study of the transition between classical and quantum behaviour of a mechanical system. Here we report the observation of self-cooling of a micromirror by radiation pressure inside a high-finesse optical cavity. In essence, changes in intensity in a detuned cavity, as caused by the thermal vibration of the mirror, provide the mechanism for entropy flow from the mirror's oscillatory motion to the low-entropy cavity field. The crucial coupling between radiation and mechanical motion was made possible by producing free-standing micromirrors of low mass (m approximately 400 ng), high reflectance (more than 99.6%) and high mechanical quality (Q approximately 10,000). We observe cooling of the mechanical oscillator by a factor of more than 30; that is, from room temperature to below 10 K. In addition to purely photothermal effects we identify radiation pressure as a relevant mechanism responsible for the cooling. In contrast with earlier experiments, our technique does not need any active feedback. We expect that improvements of our method will permit cooling ratios beyond 1,000 and will thus possibly enable cooling all the way down to the quantum mechanical ground state of the micromirror.
Resumo:
Much research over the past two decades has focussed on understanding the complex interactions of nitric oxide (NO()) in both physiological and pathological processes. As with many other aspects of NO() biology, its precise role in tumour pathophysiology has been the cause of intense debate and we now know that it participates in numerous signalling pathways that are crucial to the malignant character of cancer. The available experimental evidence highlights contrasting pro- and anti-tumour effects of NO() expression, which appear to be reconciled by consideration of the concentrations involved. This review addresses the complexities of the role of NO() in cancer, whilst evaluating various experimental approaches to NO()-based cancer therapies, including both inhibition of nitric oxide synthases, and overexpression of NO() using donor drugs or nitric oxide synthase gene transfer. The evidence provided strongly supports a role for manipulation of tumour NO() either as a stand-alone therapy or in combination with conventional treatments to achieve a significant therapeutic gain.
Resumo:
Animal fights are typically preceded by displays and there is debate whether these are always honest. We investigated the prefight period in hermit crabs, Pagurus bernhardus, during which up to four types of display plus other activities that might provide information are performed. We determined how each display influences or predicts various fight decisions, and related these displays to the motivational state of the attacker, as determined by a startle response, and of the motivational state of the defender, as determined by the duration for which it resisted eviction from its shell. Two displays appeared to have consistent but different effects. Cheliped presentation, where the claws were held in a stationary position, often by both crabs but for longer by the larger, seemed to be honest, and allowed for mutual size assessment. This display enhanced the motivation and the success of the larger crab. In contrast, cheliped extension, involving the rapid thrust of the open chelae towards the opponent, did not seem to allow for mutual size assessment and may contain an element of bluff. It was performed more by the smaller crab and enhanced its success. The complexity of displays in this species appears to allow for both honesty and manipulation.
Resumo:
We present the first empirical test of the timing hypothesis regarding the generation of size-assortative pairing in amphipods. The timing hypothesis proposes that, since large males are better able to afford the costs of mate guarding than small males, the former can take larger females into precopula earlier in the female moult cycle than is feasible for the latter. This leaves small males to form pairs with smaller females closer to moult, thus generating size assortment. We presented male Gammarus pulex, collected both in precopula and as singletons, with females that were (1) previously guarded and therefore near to copulatory moult and (2) previously unguarded and therefore far from copulatory moult. This comparison tested the prediction of the timing hypothesis, that size assortment should break down when the opportunity for time-based male decisions is removed, but that size assortment should occur where timing is not disrupted. Counter to the hypothesis, we found that size assortment did not break down upon removal of the time factor. Large males tended to initiate mate guarding earlier than small males in both female moult groups. However, only in the previously unguarded group did large males guard for longer than small males. This result suggests that, although size assortment occurred in all groups, the causative mechanisms that generated this pattern may differ between these groups. We therefore consider the possible importance of mechanisms such as aggression, simultaneous manipulation of females and female resistance in producing size assortment where males encounter numerous females that are close to moult. We also observed that prior recent guarding experience by males had no effect on latency to guard or size-assortative pairing. (C) 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Chitosan nanoparticles fabricated via different preparation protocols have been in recent years widely studied as carriers for therapeutic proteins and genes with varying degree of effectiveness and drawbacks. This work seeks to further explore the polyionic coacervation fabrication process, and associated processing conditions under which protein encapsulation and subsequent release can be systematically and predictably manipulated so as to obtain desired effectiveness. BSA was used as a model protein which was encapsulated by either incorporation or incubation method, using the polyanion tripolyphosphate (TPP) as the coacervation crosslink agent to form chitosan-BSA-TPP nanoparticles. The BSA-loaded chitosan-TPP nanoparticles were characterized for particle size, morphology, zeta potential, BSA encapsulation efficiency, and subsequent release kinetics, which were found predominantly dependent on the factors of chitosan molecular weight, chitosan concentration, BSA loading concentration, and chitosan/TPP mass ratio. The BSA loaded nanoparticles prepared under varying conditions were in the size range of 200-580 nm, and exhibit a high positive zeta potential. Detailed sequential time frame TEM imaging of morphological change of the BSA loaded particles showed a swelling and particle degradation process. Initial burst released due to surface protein desorption and diffusion from sublayers did not relate directly to change of particle size and shape, which was eminently apparent only after 6 h. It is also notable that later stage particle degradation and disintegration did not yield a substantial follow-on release, as the remaining protein molecules, with adaptable 3-D conformation, could be tightly bound and entangled with the cationic chitosan chains. In general, this study demonstrated that the polyionic coacervation process for fabricating protein loaded chitosan nanoparticles offers simple preparation conditions and a clear processing window for manipulation of physiochemical properties of the nanoparticles (e.g., size and surface charge), which can be conditioned to exert control over protein encapsulation efficiency and subsequent release profile. The weakness of the chitosan nanoparticle system lies typically with difficulties in controlling initial burst effect in releasing large quantities of protein molecules. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper is concerned with the production and reproduction of segregation in Northern Ireland and how territoriality has impacted on the Protestant community in Derry/Londonderry. The city was pivotal in the development of the most recent conflict, has a majority Catholic population, sits on a contested border and has attempted to respond to expressions of alienation that have emerged from the Protestant community. The research used multiple methods to understand the nature of alienation and exclusion using secondary data, a quantitative household survey, in-depth interviews and focus
groups. This empirical commitment was important in identifying and unpacking the claims of various stakeholders with an interest in the use and development of the area. It is argued here that a version of Collaborative Planning provides a loosely articulated conceptual and methodological framework for drawing Protestant communities into the wider planning framework for the city. The data, however, suggest that the nature of stakeholders is complex and contradictory, and discursive practice that seeks consensus has limits, especially in validating or legitimating the assertions of self-acclaimed stakeholders. The research shows that the Protestant community had declined and residualised but had little experience of direct conflict with the majority community. Moreover, the Protestant community is now more likely to use the city centre (a predominantly Catholic space) for consumption and work, and its demographic decline has stopped. These findings are important as policy responses and community relations programmes have failed to distinguish between measurable socioeconomic needs and claims concerning ethnic alienation based on emotion and manipulation. Such alienation has tended to bolster single identity communities who have little or no prospect and/or knowledge of the collaborative efforts required to deliver meaningful regeneration. More realistic strategies based on agonism focus attention on power relations and the authenticity of positions adopted by competing interests in land use management and change. The paper concludes by highlighting the need to acknowledge and value contestation but to challenge sectarian discourses represented as legitimate claims about community needs and priorities.
Resumo:
The ionic liquid (2-hydroxyethylammonium)trimethylammonium) bis(trifluoromethylsulfonyl)imide (choline bistriflimide) was obtained as a supercooled liquid at room temperature (melting point = 30 degrees C). Crystals of choline bistriflimide suitable for structure determination were grown from the melt in situ on the X-ray diffractometer. The choline cation adopts a folded conformation, whereas the bistriflimide anion exhibits a transoid conformation. The choline cation and the bistriflimide anion are held together by hydrogen bonds between the hydroxyl proton and a sulfonyl oxygen atom. This hydrogen bonding is of importance for the temperature-dependent solubility proper-ties of the ionic liquid. Choline bistriflimide is not miscible with water at room temperature, but forms one phase with water at temperatures above 72 degrees C (equals upper critical solution temperature). H-1 NMR studies show that the hydrogen bonds between the choline cation and the bistriflimide anion are substantially weakened above this temperature. The thermophysical properties of water-choline bistriflimide binary mixtures were furthermore studied by a photopyroelectric technique and by adiabatic scanning calorimetry (ASC). By photothermal analysis, besides highly accurate values for the thermal conductivity and effusivity of choline bistriflimide at 30 degrees C, the detailed temperature dependence of both the thermal conductivity and effusivity of the upper and lower part of a critical water-choline bistriflimide mixture in the neighborhood of the mixing-demixing phase transition could be determined with high resolution and accuracy. Together with high resolution ASC data for the heat capacity, experimental values were obtained for the critical exponents alpha and beta, and for the critical amplitude ratio G(+)/G(-). These three values were found to be consistent with theoretical expectations for a three dimensional Ising-type of critical behavior of binary liquid mixtures.
Resumo:
The constant bearing angle (CBA) strategy is a prospective strategy that permits the interception of moving objects. The purpose of the present study is to test this strategy. Participants were asked to walk through a virtual environment and to change, if necessary, their walking speed so as to intercept approaching targets. The targets followed either a rectilinear or a curvilinear trajectory and target size was manipulated both within trials (target size was gradually changed during the trial in order to bias expansion) and between trials (targets of different sizes were used). The curvature manipulation had a large effect on the kinematics of walking, which is in agreement with the CBA strategy. The target size manipulations also affected the kinematics of walking. Although these effects of target size are not predicted by the CBA strategy, quantitative comparisons of observed kinematics and the kinematics predicted by the CBA strategy showed good fits. Furthermore, predictions based on the CBA strategy were deemed superior to predictions based on a required velocity (V-REQ) model. The role of target size and expansion in the prospective control of walking is discussed.
Resumo:
Three experiments examined the influence of a second rule on the pattern of card selections on Wason's selection task. In Experiment 1 participants received a version of the task with a single test rule or one of two versions of the task with the same original test rule together with a second rule. The probability of q was manipulated in the two-rules conditions by varying the size of the antecedent set in the second rule. The results showed a significant suppression of q card and not-p card selections in the alternative-rule conditions, but no difference as a function of antecedent set size. In Experiment 2 the size of the antecendent set in the two-rules conditions was manipulated using the context of a computer printing double-sided cards. The results showed a significant reduction of q card selections in the two-rules conditions, but no effect of p set size. In Experiment 3 the scenario accompanying the rule was manipulated, and it specified a single alternative antecedent or a number of alternative antecedents. The q card selection rates were not affected by the scenario manipulation but again were suppressed by the presence of a second rule. Our results suggest that people make inferences about the unseen side of the cards when engaging with the task and that these inferences are systematically influenced by the presence of a second rule, but are not influenced by the probabilistic characteristics of this rule. These findings are discussed in the context of decision theoretic views of selection task performance (Oaksford Chater, 1994).
Resumo:
The process of making replicas of heritage has traditionally been developed by public agencies, corporations and museums and is not commonly used in schools. Currently there are technologies that allow creating cheap replicas. The new 3D reconstruction software, based on photographs and low cost 3D printers allow to make replicas at a cost much lower than traditional. This article describes the process of creating replicas of the sculpture Goslar Warrior of artist Henry Moore, located in Santa Cruz de Tenerife. To make this process, first, a digital model have been created using Autodesk Recap 360, Autodesk 123D Catch and Autodesk Meshmixer MarkerBot MakerWare applications. Physical replication, has been reproduced in polylactic acid (PLA) by MakerBot Replicator 2 3D printer. In addition, a cost analysis using, in one hand, the printer mentioned, and in the other hand, 3D printing services both online and local, is included. Finally, there has been a specific action with 141 students and 12 high school teachers, who filled a questionnary about the use of sculptural replicas in education.
Resumo:
Background: MicroRNAs (miRNAs) are small RNA molecules (similar to 22 nucleotides) which have been shown to play an important role both in development and in maintenance of adult tissue. Conditional inactivation of miRNAs in the eye causes loss of visual function and progressive retinal degeneration. In addition to inhibiting translation, miRNAs can mediate degradation of targeted mRNAs. We have previously shown that candidate miRNAs affecting transcript levels in a tissue can be deduced from mRNA microarray expression profiles. The purpose of this study was to predict miRNAs which affect mRNA levels in developing and adult retinal tissue and to confirm their expression.
Results: Microarray expression data from ciliary epithelial retinal stem cells (CE-RSCs), developing and adult mouse retina were generated or downloaded from public repositories. Analysis of gene expression profiles detected the effects of multiple miRNAs in CE-RSCs and retina. The expression of 20 selected miRNAs was confirmed by RT-PCR and the cellular distribution of representative candidates analyzed by in situ hybridization. The expression levels of miRNAs correlated with the significance of their predicted effects upon mRNA expression. Highly expressed miRNAs included miR-124, miR-125a, miR-125b, miR-204 and miR-9. Over-expression of three miRNAs with significant predicted effects upon global mRNA levels resulted in a decrease in mRNA expression of five out of six individual predicted target genes assayed.
Conclusions: This study has detected the effect of miRNAs upon mRNA expression in immature and adult retinal tissue and cells. The validity of these observations is supported by the experimental confirmation of candidate miRNA expression and the regulation of predicted target genes following miRNA over-expression. Identified miRNAs are likely to be important in retinal development and function. Misregulation of these miRNAs might contribute to retinal degeneration and disease. Conversely, manipulation of their expression could potentially be used as a therapeutic tool in the future.
Resumo:
OBJECTIVE:
To elucidate the contribution of environmental versus genetic factors to the significant losses in visual function associated with normal aging.
DESIGN:
A classical twin study.
PARTICIPANTS:
Forty-two twin pairs (21 monozygotic and 21 dizygotic; age 57-75 years) with normal visual acuity recruited through the Australian Twin Registry.
METHODS:
Cone function was evaluated by establishing absolute cone contrast thresholds to flicker (4 and 14 Hz) and isoluminant red and blue colors under steady state adaptation. Adaptation dynamics were determined for both cones and rods. Bootstrap resampling was used to return robust intrapair correlations for each parameter.
MAIN OUTCOME MEASURES:
Psychophysical thresholds and adaptational time constants.
RESULTS:
The intrapair correlations for all color and flicker thresholds, as well as cone absolute threshold, were significantly higher in monozygotic compared with dizygotic twin pairs (P<0.05). Rod absolute thresholds (P = 0.28) and rod and cone recovery rate (P = 0.83; P = 0.79, respectively) did not show significant differences between monozygotic and dizygotic twins in their intrapair correlations, indicating that steady-state cone thresholds and flicker thresholds have a marked genetic contribution, in contrast with rod thresholds and adaptive processes, which are influenced more by environmental factors over a lifetime.
CONCLUSIONS:
Genes and the environment contribute differently to important neuronal processes in the retina and the role they may play in the decline in visual function as we age. Consequently, retinal structures involved in rod thresholds and adaptive processes may be responsive to appropriate environmental manipulation. Because the functions tested are commonly impaired in the early stages of age-related macular degeneration, which is known to have a multifactorial etiology, this study supports the view that pathogenic pathways early in the disease may be altered by appropriate environmental intervention.
Resumo:
We assessed the extent to which an invader, Gammarus pulex (Crustacea: Amphipoda), has replaced a native, Gammarus duebeni celticus, over a 13-year period in a European river system and some of the abiotic and biotic factors that could account for this. Between 1988 and 2001, 56% of mixed-species sites had become invader-only sites, whereas no mixed sites had become native only again. The native dominated areas of higher dissolved oxygen and water quality, with the reciprocal true for the invader. Field transplant experiments revealed that native survivorship was lower in areas where it had been replaced than in areas where the invader does not yet occur. In invader-only areas, native survivorship was lower than that of the invader when kept separately and lowest when both species were kept together. We also observed predation of the native by the invader. Laboratory oxygen manipulation experiments revealed that at 30% saturation, the native's survivorship was two thirds that of the invader. We conclude that decreasing water quality favours replacement of the native by the invader.
Resumo:
1. There is increasing interest in the use of stable isotope analysis of archived materials to study the long-term impacts of lake perturbations, including nutrient manipulation or species invasion. We tested the utility of this approach in a shallow productive lake using the zooplanktivorous early life stages of roach ( Rutilus rutilus), a fish species that is widespread throughout Eurasian lakes.