980 resultados para photoluminescence (PL) spectra


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, we report on the synthesis of SrMoO4 powders by co-precipitation method and processed in a microwave-hydrothermal at 413 K for 5 h. These powders were analyzed by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman), ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL). XRD analyses revealed that the SrMoO4 powders are free of secondary phases and crystallize in a tetragonal structure. FT-Raman investigations showed the presence of Raman-active vibration modes correspondent for this molybdate. UV-vis technique was employed to determine the optical band gap of this material. SrMoO4 powders exhibit an intense PL emission at room temperature with maximum peak at 540 nm (green region) when excited by 488 nm wavelength of an argon ion laser. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Photoluminescence (PL) behavior of SrBi2Nb2O9 (SBN) powders was explained by means of beta-Bi2O3 phase on the SBN lattice. Oxygen vacancies and recombination of electrons holes in the valence band lead to the formation of [NbO5 center dot V-O(x)], [NbO5 center dot V-O(center dot)] and [NbO5 center dot V-O(center dot center dot)] complex clusters which are the main reason for the PL at room temperature. X-ray diffraction and Fourier transform Raman spectroscopy were used as tools to investigate the structural changes in SBN lattice allowing to correlate [NbO5 center dot V-O(center dot)]/[NbO6](') ratio with the evolution of the visible PL emission in the SBN powders. (c) 2007 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Amorphous thin films, based on different network formers, were processed by a soft chemical process called the polymeric precursor method. The resultant amorphous metal oxides, displayed intense photoluminescence (PL) at room temperature. Heat treatment increases the PL intensity of these materials. Theoretical ab initio calculations are correlated with the observed experimental trends. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Crystalline BaWO4 (BWO) powder obtained by the polymeric precursor method was structurally disordered by means of high-energy mechanical milling. For the first time a strong and broad photoluminescence (PL) has been measured at room temperature for mechanically milled BWO powder and interpreted by ground-state quantum mechanical calculations in the density functional theory framework. Two periodic models have been studied; one representing the crystalline form and the other one representing the disordered BWO powder. These models allowed the calculation of electronic properties, which are consistent with the experimental results, showing that structural disorder in the lattice is an important condition to generate an intense and broad PL band. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)