937 resultados para photocatalytic activity
Resumo:
One of the promising strategies for neural repair therapies is the transplantation of olfactory ensheathing cells (OECs) which are the glial cells of the olfactory system. We evaluated the effects of curcumin on the behaviour of mouse OECs to determine if it could be of use to further enhance the therapeutic potential of OECs. Curcumin, a natural polyphenol compound found in the spice turmeric, is known for its anti-cancer properties at doses over 10 µM, and often at 50 µM, and it exerts its effects on cancer cells in part by activation of MAP kinases. In contrast, we found that low-dose curcumin (0.5 µM) applied to OECs strikingly modulated the dynamic morphology, increased the rate of migration by up to 4-fold, and promoted significant proliferation of the OECs. Most dramatically, low-dose curcumin stimulated a 10-fold increase in the phagocytic activity of OECs. All of these potently stimulated behavioural characteristics of OECs are favourable for neural repair therapies. Importantly, low-dose curcumin gave a transient activation of p38 kinases, which is in contrast to the high dose curcumin effects on cancer cells in which these MAP kinases tend to undergo prolonged activation. Low-dose curcumin mediated effects on OECs demonstrate cell-type specific stimulation of p38 and ERK kinases. These results constitute the first evidence that low-dose curcumin can modulate the behaviour of olfactory glia into a phenotype potentially more favourable for neural repair and thereby improve the therapeutic use of OECs for neural repair therapies
Resumo:
A novel near-infrared spectroscopy (NIRS) method has been researched and developed for the simultaneous analyses of the chemical components and associated properties of mint (Mentha haplocalyx Briq.) tea samples. The common analytes were: total polysaccharide content, total flavonoid content, total phenolic content, and total antioxidant activity. To resolve the NIRS data matrix for such analyses, least squares support vector machines was found to be the best chemometrics method for prediction, although it was closely followed by the radial basis function/partial least squares model. Interestingly, the commonly used partial least squares was unsatisfactory in this case. Additionally, principal component analysis and hierarchical cluster analysis were able to distinguish the mint samples according to their four geographical provinces of origin, and this was further facilitated with the use of the chemometrics classification methods-K-nearest neighbors, linear discriminant analysis, and partial least squares discriminant analysis. In general, given the potential savings with sampling and analysis time as well as with the costs of special analytical reagents required for the standard individual methods, NIRS offered a very attractive alternative for the simultaneous analysis of mint samples.
Resumo:
A holistic consideration of innovation and associated activities is still very new to consulting engineering firms. This research will have benefits for both industry and academia. The final outcome of this research is a prioritised decision making innovation model that can be used by consulting engineering firms to make informed decisions by investing in appropriate innovation activities that positively impact project performance. This helps by using an informed approach towards investing rather than 'hit-and-miss' trialling.
Resumo:
Background: Alterations in energy expenditure during activity post head injury has not been investigated due primarily to the difficulty of measurement. Objective: The aim of this study was to compare energy expenditure during activity and body composition of children following acquired brain injury (ABI) with data from a group of normal controls. Design: Energy expenditure was measured using the Cosmed K4b2 in a group of 15 children with ABI and a group of 67 normal children during rest and when walking and running. Mean number of steps taken per 3 min run was also recorded and body composition was measured. Results: The energy expended during walking was not significantly different between both groups. A significant difference was found between the two groups in the energy expended during running and also for the number of steps taken as children with ABI took significantly less steps than the normal controls during a 3 min run. Conclusions: Children with ABI exert more energy per activity than healthy controls when controlled for velocity or distance. However, they expend less energy to walk and run when they are free to choose their own desirable, comfortable pace than normal controls. © 2003 Elsevier Ltd. All rights reserved.
Resumo:
Five stereochemically constrained analogs of the chemotactic tripeptide incorporating 1-aminocycloalkane-1-carboxylic acid (Ac(n)c) and alpha,alpha-dialkylglycines (Deg, diethylglycine; Dpg, n,n-dipropylglycine and Dbg, n,n-dibutylglycine) at position 2 have been synthesized. NMR studies of peptides For-Met-Xxx-Phe-OMe (Xxx = Ac(7)c, I; Ac(8)c, II; Deg, III; Dpg, IV and Dbg, V; For, formyl) establish that peptides with cycloalkyl residues, I and II, adopt folded beta-turn conformations in CDCl3 and (CD3)(2)SO. In contrast, analogs with linear alkyl sidechains, III-V, favour fully extended (C-5) conformations in solution. Peptides I-V exhibit high activity in inducing beta-glucosaminidase release from rabbit neutrophils, with ED(50) values ranging from 1.4-8.0 x 10(-11)M. In human neutrophils the Dxg peptides III-V have ED(50) values ranging from 2.3 x 10(-8) to 5.9 x 10(-10) M, with the activity order being V > IV > III. While peptides I-IV are less active than the parent. For-Met-Leu-Phe-OH, in stimulating histamine release from human basophils, the Dbg peptide V is appreciably more potent, suggesting its potential utility as a probe for formyl peptide receptors.
Resumo:
A novel test of recent theories of the origin of optical activity has been designed based on the inclusion of certain alkyl 2-methylhexanoates into urea channels.
Resumo:
This paper presents a system to analyze long field recordings with low signal-to-noise ratio (SNR) for bio-acoustic monitoring. A method based on spectral peak track, Shannon entropy, harmonic structure and oscillation structure is proposed to automatically detect anuran (frog) calling activity. Gaussian mixture model (GMM) is introduced for modelling those features. Four anuran species widespread in Queensland, Australia, are selected to evaluate the proposed system. A visualization method based on extracted indices is employed for detection of anuran calling activity which achieves high accuracy.
Resumo:
The photocatalytic and thermal degradations of poly(methyl methacrylate), poly(butyl acrylate), and their copolymers of different compositions were studied. The photocatalytic degradation was investigated in o-dichlorobenzene in the presence of two different catalysts, namely, Degussa P-25 and combustion synthesized nanotitania (CSN-TiO2). The samples were analyzed by using gel permeation chromatography (GPC) to obtain the molecular weight distributions (MWDs) as a function of reaction time. Experimental data indicated that the photodegradation of these polymers occurs by both random and chain end scission. A continuous distribution kinetic model was used to determine the degradation rate coefficients by fitting the experimental data with the model. Both the random and specific rate coefficients of the copolymers decreased with increasing percentage of butyl acrylate (BA). Thermal degradation of the copolymers was investigated by thermo-gravimetry. The normalized weight loss profiles for the copolymers showed that the thermal stability of the copolymers increased with mole percentage of BA in the copolymer (PMMABA). The Czawa method was used to determine the activation energies at different conversions. At low acrylate content in the copolymer, the activation energy depends on conversion, indicating multiple degradation mechanisms. At high acrylate content in the copolymer, the activation energy is independent of conversion, indicating degradation by a one-step mechanism.
Resumo:
The photocatalytic ability of cubic Bi1.5ZnNb1.5O7 (BZN) pyrochlore for the decolorization of an acid orange 7 (AO7) azo dye in aqueous solution under ultraviolet (UV) irradiation has been investigated for the first time. BZN catalyst powders prepared using low temperature sol-gel and higher temperature solid-state methods have been evaluated and their reaction rates have been compared.The experimental band gap energy has been estimated from the optical absorption edge and has been used as reference for theoretical calculations. The electronic band structure of BZN has been investigated using first-principles density functional theory (DFT) calculations for random, completely and partially ordered solid solutions of Zn cations in both the A and B sites of the pyrochlore structure.The nature of the orbitals in the valence band (VB) and the conduction band (CB) has been identified and the theoretical band gap energy has been discussed in terms of the DFT model approximations.
Resumo:
This paper considers the adequacy and efficiency of existing legal and regulatory frameworks to deal with corporate phoenix activity. Phoenix activity, which is often triggered by a solvency crisis, is estimated to cost the Australian economy up to $3 billion each year. Despite the raft of piecemeal Australian legislation directed at this activity, phoenix activity does not appear to be abating. This paper considers regulatory approaches to detection and enforcement of the underlying law. This study reveals and explores a perception that the law is deficient, and the tension that exists between the adequacy of the law and the regulatory approach.
Resumo:
Remedying the mischief of phoenix activity is of practical importance. The benefits include continued confidence in our economy, law that inspires best practice among directors, and law that is articulated in a manner such that penalties act as a sufficient deterrent and the regulatory system is able to detect offenders and bring them to account. Any further reforms must accommodate and tolerate legal phoenix activity. Phoenix activity pushes tolerance of entrepreneurial activity to its absolute limits. The wisest approach would be to front end the reforms so as to alleviate the considerable detection and enforcement burden upon regulatory bodies. There is little doubt that breach of the existing law is difficult and expensive to detect; and this is a significant burden when regulators have shrinking budgets and are rapidly losing feet on the ground. This front end approach may need to include restrictions on access to limited liability. The more limited liability is misused, the stronger the argument to limit access to limited liability. This paper proposes that such an approach is a legitimate next step for a robust and mature capitalist economy.
Resumo:
A copper(II) complex of dipyridophenazine, viz., [Cu(dppz)(2)(H2O)](ClO4)(2) (I), has been prepared and structurally characterized by X-ray crystallography. The crystal structure of the complex shows a five-coordinate structure in which two N,N-donor dipyridophenazine (dppz) and one aqua ligand bind to the copper(II) center giving Cu-O and Cu-N bond distances in the range of 1.981(6) to 2.043(6) angstrom. The ESI-MS spectrum of 1 in MeCN shows a peak at m/z value of 313 (100%) indicating the dissociation of the aqua ligand in the solution phase. The complex is one-electron paramagnetic (mu(eff), 1.86 mu(B)). It displays a quasi-reversible Cu(II)/Cu(I) redox process at 0.096 V. The complex is an avid binder to CT DNA giving a binding constant value of 3.5 x 10(5) M-1. It shows significant hydrolytic cleavage of supercoiled pUC19 DNA in dark ill the absence of any external agents. The complex exhibits chemical nuclease activity oil treatment with 3-mercaptopropionic acid as a reducing agent forming hydroxyl radicals. Complex 1 is a model synthetic nuclease and hydrolase showing both modes of DNA cleavage under different reaction conditions. The DNA cleavage activity of 1 is significantly better than its phen analogue but similar to that of the bis-dpq complex.
Resumo:
Corporate phoenixing activity is estimated to cost the Australian economy $1-3 billion dollars annually. Significant questions arise as to whether existing legal frameworks are adequate to deal with phoenix activity, and whether further reform is necessary. Bills proposing reform appear to be languishing amid doubts as to their potential effectiveness. This paper will examine the conundrum presented by phoenix activity, the importance of further reform and the impact of the lack of a statutory definition of ‘phoenix activity’ on a regulatory environment that not only uses the term, but punishes offenders accused of it.
Identification of amino groups in the carbohydrate binding activity of winged bean acidic agglutinin
Resumo:
Chemical modification studies reveal that the modification of amino groups in WBA II leads to a complete loss in the hemagglutinating and saccharide binding activities. Since WBA II is a dimeric molecule and contains two binding sites, one amino group in each of the binding sites is inferred to be essential for its activity. The presence of amino group which has a potential to form hydrogen bonded interactions with the ligand, substantiates our observation regarding the forces involved in WBA II-receptor and WBA II-simple sugar interactions.
Resumo:
Ferrocene-conjugated ternary copper(II) complexes [Cu(L)(B)](ClO4)(2), where L is FcCH(2)N(CH2Py)(2) (Fc = (eta(5)-C5H4)Fe-II(eta(5)-C5H5)) and B is a phenanthroline base, viz., 2,2'-bipyridine (bpy, 1), 1, 10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3), and dipyrido[3,2-a:2',3'-c]phenazine (dppz, 4), have been synthesized and characterized by various spectroscopic and analytical techniques. The bpy complex 1, as its hexafluorophosphate salt, has been structurally characterized by X-ray crystallography. The molecular structure shows the copper(II) center having an essentially square-pyramidal coordination geometry in which L with a pendant ferrocenyl (Fc) moiety and bpy show respective tridentate and bidentate modes of binding to the metal center. The complexes are redox active, showing a reversible cyclic voltammetric response of the Fc(+)-Fc couple near 0.5 V vs SCE and a quasi-reversible Cu(II)-Cu(I) couple near 0.0 V. Complexes 2-4 show binding affinity to calf thymus (CT) DNA, giving binding constant (K-b) values in the range of 4.2 x 10(4) to 2.5 x 10(5) M-1. Thermal denaturation and viscometric titration data suggest groove binding and/or a partial intercalative mode of binding of the complexes to CT DNA. The complexes show good binding propensity to the bovine serum albumin (BSA) protein, giving K-BSA values of similar to 10(4) M-1 for the bpy and phen complexes and similar to 10(5) M-1 for the dpq and dppz complexes. Complexes 2-4 exhibit efficient chemical nuclease activity in the presence of 3-mercapto-propionic acid (MPA) as a reducing agent or hydrogen peroxide (H2O2) as an oxidizing agent. Mechanistic studies reveal formation of hydroxyl radicals as the reactive species. The dpq and dppz complexes are active in cleaving supercoiled (SC) pUC19 DNA on photoexposure to visible light of different wavelengths including red light using an argon-krypton mixed gas ion laser. Mechanistic investigations using various inhibitors reveal the fort-nation of hydroxyl radicals in the DNA photocleavage reactions. The dppz complex 4, which shows efficient photoioduced BSA cleavage activity, is a potent multifunctional model nuclease and protease in the chemistry of photodynamic therapy (PDT) of cancer.