990 resultados para photo-thermal deformation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zn(CN)2 and Ni(CN)2 are known for exhibiting anomalous thermal expansion over a wide temperature range. The volume thermal expansion coefficient for the cubic, three dimensionally connected material, Zn(CN)2, is negative (alpha(V) = −51  10(-6) K-1) while for Ni(CN)2, a tetragonal material, the thermal expansion coefficient is negative in the two dimensionally connected sheets (alpha(a) = −7  10(-6) K-1), but the overall thermal expansion coefficient is positive (alpha(V) = 48  10(-6) K-1). We have measured the temperature dependence of phonon spectra in these compounds and analyzed them using ab initio calculations. The spectra of the two compounds show large differences that cannot be explained by simple mass renormalization of the modes involving Zn (65.38 amu) and Ni (58.69 amu) atoms. This reflects the fact that the structure and bonding are quite different in the two compounds. The calculated pressure dependence of the phonon modes and of the thermal expansion coefficient, alpha(V), are used to understand the anomalous behavior in these compounds. Our ab initio calculations indicate that phonon modes of energy approx. 2 meV are major contributors to negative thermal expansion (NTE) in both the compounds. The low-energy modes of approx.8 and 13 meV in Zn(CN)2 also contribute significantly to the NTE in Zn(CN)2 and Ni(CN)2, respectively. The measured temperature dependence of the phonon spectra has been used to estimate the total anharmonicity of both compounds. For Zn(CN)2, the temperature-dependent measurements (total anharmonicity), along with our previously reported pressure dependence of the phonon spectra (quasiharmonic), is used to separate the explicit temperature effect at constant volume (intrinsic anharmonicity).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report preliminary results from studies of biological effects induced by non-thermal levels of non-ionizing electromagnetic radiation. Exponentially growing Saccharomyces cerevisiae yeast cells grown on dry media were exposed to electromagnetic fields in the 200–350 GHz frequency range at low power density to observe possible non-thermal effects on the microcolony growth. Exposure to the electromagnetic field was conducted over 2.5 h. The data from exposure and control experiments were grouped into either large-, medium- or small-sized microcolonies to assist in the accurate assessment of growth. The three groups showed significant differences in growth between exposed and control microcolonies. A statistically significant enhanced growth rate was observed at 341 GHz. Growth rate was assessed every 30 min via time-lapse photography. Possible interaction mechanisms are discussed, taking into account Frohlich's hypothesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical study has been carried out to investigate the influence of large-scale thermal effects and strong local-scale temperature gradients near the ground on the circulation inside a street canyon. The results show that the dynamical forcing dominates the circulation inside a street canyon. But this forcing is influenced by the large-scale thermal stability. Thus, atmospheric stability indirectly controls the street canyon circulation. Small temperature gradients inside the street-canyon are neutralised by the external dynamical forcing. Strong temperature gradients inside the street-canyon show an impact on the street canyon circulation. While stable stratification reduces the circulation for the building configuration investigated, convective stratification seems to intensify it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Waves with periods shorter than the inertial period exist in the atmosphere (as inertia-gravity waves) and in the oceans (as Poincaré and internal gravity waves). Such waves owe their origin to various mechanisms, but of particular interest are those arising either from local secondary instabilities or spontaneous emission due to loss of balance. These phenomena have been studied in the laboratory, both in the mechanically-forced and the thermally-forced rotating annulus. Their generation mechanisms, especially in the latter system, have not yet been fully understood, however. Here we examine short period waves in a numerical model of the rotating thermal annulus, and show how the results are consistent with those from earlier laboratory experiments. We then show how these waves are consistent with being inertia-gravity waves generated by a localised instability within the thermal boundary layer, the location of which is determined by regions of strong shear and downwelling at certain points within a large-scale baroclinic wave flow. The resulting instability launches small-scale inertia-gravity waves into the geostrophic interior of the flow. Their behaviour is captured in fully nonlinear numerical simulations in a finite-difference, 3D Boussinesq Navier-Stokes model. Such a mechanism has many similarities with those responsible for launching small- and meso-scale inertia-gravity waves in the atmosphere from fronts and local convection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal performance of a horizontal-coupled ground-source heat pump system has been assessed both experimentally and numerically in a UK climate. A numerical simulation of thermal behaviour of the horizontal-coupled heat exchanger for combinations of different ambient air temperatures, wind speeds, refrigerant temperature and soil thermal properties was studied using a validated 2D transient model. The specific heat extraction by the heat exchanger increased with ambient temperature and soil thermal conductivity, however it decreased with increasing refrigerant temperature. The effect of wind speed was negligible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interpenetrating polymeric networks based on sodium alginate and poly(N-isopropylacrylamide) (PNIPAAm) covalently crosslinked with N,N′-methylenebisacrylamide have been investigated using rheology, thermogravimetry, differential scanning calorimetry, X-ray diffraction measurements and scanning electron microscopy (SEM). An improved elastic response of the samples with a higher PNIPAAm content and increased amount of crosslinking agent was found. The temperature-responsive behaviour of the hydrogel samples was evidenced by viscoelastic measurements performed at various temperatures. It is shown that the properties of these gels can be tuned according to composition, amount of crosslinking agent and temperature changes. X-ray scattering analysis revealed that the hydrophobic groups are locally segregated even in the swollen state whilst cryo-SEM showed the highly heterogeneous nature of the gels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myrosinase, a family of enzymes which coexist with glucosinolates in all Brassica vegetables, catalyses the hydrolysis of glucosinolates to yield compounds that can have beneficial effects on human health. In this study, the thermal and pressure inactivation of myrosinase from green cabbage was kinetically investigated. Thermal inactivation started at 35 C and inactivation kinetics was studied in the temperature range 35–55 C. Thermal inactivation of green cabbage myrosinase followed the well known consecutive step model. Pressure inactivation started at 300 MPa, even at 10 C, and the consecutive step model effectively described pressure inactivation in the range 300–450 MPa at 10 C. The combined effects of applying various pressures and temperatures on myrosinase inactivation kinetics were studied in the ranges 35–50 C and, 100–400 MPa. The inactivation followed first-order kinetics at all of the applied combinations. This study demonstrates that myrosinase from green cabbage is highly susceptible to both thermal and high pressure processing. Furthermore, it is also noted that myrosinase stability during processing appears to vary widely between different Brassica species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adaptive thermal comfort theory considers people as active rather than passive recipients in response to ambient physical thermal stimuli, in contrast with conventional, heat-balance-based, thermal comfort theory. Occupants actively interact with the environments they occupy by means of utilizing adaptations in terms of physiological, behavioural and psychological dimensions to achieve ‘real world’ thermal comfort. This paper introduces a method of quantifying the physiological, behavioural and psychological portions of the adaptation process by using the analytic hierarchy process (AHP) based on the case studies conducted in the UK and China. Apart from three categories of adaptations which are viewed as criteria, six possible alternatives are considered: physiological indices/health status, the indoor environment, the outdoor environment, personal physical factors, environmental control and thermal expectation. With the AHP technique, all the above-mentioned criteria, factors and corresponding elements are arranged in a hierarchy tree and quantified by using a series of pair-wise judgements. A sensitivity analysis is carried out to improve the quality of these results. The proposed quantitative weighting method provides researchers with opportunities to better understand the adaptive mechanisms and reveal the significance of each category for the achievement of adaptive thermal comfort.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper fully describes a nation-wide field study on building thermal environment and thermal comfort of occupant, which was carried out in summer 2005 and in winter 2006 respectively in China, illustrating the adaptive strategies adopted by occupants in domestic buildings in China. According to the climate division in China, the buildings in Beijing (BJ), Shanghai (SH), Wuhan (WH) and Chongqing (CQ), Guangzhou (GZ), Kunming (KM), were selected as targets which are corresponding to cold zone, hot summer and cold winter zone (SWC-SH, WH, CQ), hot summer and warm winter zone and temperate zone, respectively. The methodology used in the field study is the combination of subjective questionnaire regarding thermal sensation and adaptive approaches and physical environmental monitoring including indoor air temperature and relative humidity. A total of 1671 subjects participate in this investigation with more than 80% response rate in all surveyed cities. Both physiological and non-physiological factors (behavioural and psychological adaptations) have been analysed.