992 resultados para personal dynamics
Resumo:
Molecular dynamics (MD) studies have been carried out on the Hoogsteen hydrogen bonded parallel and the reverse Hoogsteen hydrogen banded antiparallel C.G*G triplexes. Earlier, the molecular mechanics studies had shown that the parallel structure was energetically more favourable than the antiparallel structure. To characterize the structural stability of the two triplexes and to investigate whether the antiparallel structure can transit to an energetically more favourable structure, due to the local fluctuations in the structure during the MD simulation, the two structures were subjected to 200ps of constant temperature vacuum MD simulations at 300K. Initially no constraints were applied to the structures and it was observed that for the antiparallel tripler, the structure showed a large root mean square deviation from the starting structure within the first 12ps and the N4-H41-O6 hydrogen bond in the WC duplex got distorted due to a high propeller twist and a moderate increase in the opening angle in the basepairs. Starting from an initial value of 30 degrees, helical twist of the average structure from this simulation had a value of 36 degrees, while the parallel structure stabilized at a twist of 33 degrees. In spite of the hydrogen bond distortions in the antiparallel tripler, it was energetically comparable to the parallel tripler. To examine the structural characteristics of an undistorted structure, another MD simulation was performed on the antiparallel tripler by constraining all the hydrogen bonds. This structure stabilized at an average twist of 33 degrees. In the course of the dynamics though the energy of the molecule - compared to the initial structure - improved, it did not become comparable to the parallel structure. Energy minimization studies performed in the presence of explicit water and counterions also showed the two structures to be equally favourable energetically Together these results indicate that the parallel C.G*G tripler with Hoogsteen hydrogen bonds also represents a stereochemically and energetically favourable structure for this class of triplexes.
Resumo:
Recent experimental studies have shown that the Rec-A mediated homologous recombination reaction involves a triple helical intermediate, in which the third strand base forms hydrogen bonds with both the bases in the major groove of the Watson-Crick duplex. Such 'mixed' hydrogen bonds allow formation of sequence independent triplexes. DNA triple helices involving 'mixed' hydrogen bonds have been studied, using model building, molecular mechanics (MM) and molecular dynamics (MD). Models were built for a tripler comprising all four possible triplets viz., G.C*C, C.G*G, A.T*T and T.A*A. To check the stability of all the 'mixed' hydrogen bonds in such triplexes and the conformational preferences of such tripler structures, MD studies were carried out starting from two structures with 30 degrees and 36 degrees twist between the basepairs. It was observed that though the two triplexes converged towards a similar structure, the various hydrogen bonds between the WC duplex and the third strand showed differential stabilities. An MD simulation with restrained hydrogen bonds showed that the resulting structure was stable and remained close to the starting structure. These studies help us in defining stable hydrogen bond geometries involving the third strand and the WC duplex. It was observed that in the C.G*G triplets the N7 atom of the second strand is always involved in hydrogen bonding. In the G.C*C triplets, either N3 or O2 in the third strand cytosine can interchangeably act as a hydrogen bond acceptor.
Resumo:
Degenerate pump-probe reflectivity experiments have been performed on a single crystal of bismuth telluride (Bi2Te3) as a function of sample temperature (3 K to 296 K) and pump intensity using similar to 50 femtosecond laser pulses with central photon energy of 1.57 eV. The time-resolved reflectivity data show two coherently generated totally symmetric A(1g) modes at 1.85 THz and 3.6 THz at 296 K which blue-shift to 1.9 THz and 4.02 THz, respectively, at 3 K. At high photoexcited carrier density of similar to 1.7 x 10(21) cm(-3), the phonon mode at 4.02 THz is two orders of magnitude higher positively chirped (i.e the phonon time period decreases with increasing delay time between the pump and the probe pulses) than the lower-frequency mode at 1.9 THz. The chirp parameter, beta is shown to be inversely varying with temperature. The time evolution of these modes is studied using continuous-wavelet transform of the time-resolved reflectivity data. Copyright (C) EPLA, 2010
Resumo:
Kocks' formalism for analysing steady state deformation data for the case where Cottrell-Stokes law is valid is extended to incorporate possible back stresses from solution and/or precipitation hardening, and dependence of pre-exponential factor on the applied stress. A simple graphical procedure for exploiting these equations is demonstrated by analyzing tensile steady state data for a type 316 austentic stainless steel for the temperature range 1023 to 1223 K. In this instance, the computed back stress values turned out to be negative, a physically meaningless result. This shows that for SS 316, deformation in this temperature regime can not be interpreted in terms of a mechanism that obeys Cottrell-Stokes law.
Resumo:
In this article we present a new, general but simple, microscopic expression for time-dependent solvation energy of an ion. This expression is surprisingly similar to the expression for the time-dependent dielectric friction on a moving ion. We show that both the Chandra-Bagchi and the Fried-Mukamel formulations of solvation dynamics can be easily derived from this expression. This expression leads to an almost perfect agreement of the theory with all the available computer simulation results. Second, we show here for the first time that the mobility of a light solute ion can significantly accelerate its own solvation, specially in the underdamped limit. The latter result is also in excellent agreement with the computer simulations.
Resumo:
Beta-Lactamase, which catalyzes beta-lactam antibiotics, is prototypical of large alpha/beta proteins with a scaffolding formed by strong noncovalent interactions. Experimentally, the enzyme is well characterized, and intermediates that are slightly less compact and having nearly the same content of secondary structure have been identified in the folding pathway. In the present study, high temperature molecular dynamics simulations have been carried out on the native enzyme in solution. Analysis of these results in terms of root mean square fluctuations in cartesian and [phi, psi] space, backbone dihedral angles and secondary structural hydrogen bonds forms the basis for an investigation of the topology of partially unfolded states of beta-lactamase. A differential stability has been observed for alpha-helices and beta-sheets upon thermal denaturation to putative unfolding intermediates. These observations contribute to an understanding of the folding/unfolding processes of beta-lactamases in particular, and other alpha/beta proteins in general.
Resumo:
Proline plays an important role in the secondary structure of proteins. In the pursuit of understanding its structural role, Proline containing helices with constraints have been studied by employing molecular dynamics (MD) technique. In the present study, the constraint introduced is a threonine residue, whose sidechain has intramolecular hydrogen bond interaction with the backbone oxygen atom. The three systems that have been chosen for characterization are: (1) Ace-(Ala)12−Thr-Pro-(Ala)10−NHMe, (2) Ace-(Ala)13-Pro-Ala-Thr- (Ala)8-NHMe and (3) Ace-(Ala)13-Pro-(Ala)3-Thr-(Ala)6-NHMe. The equilibrium structures and structural transitions have been identified by monitoring the backbone dihedral angles, bend related parameters and the hydrogen bond interactions. The MD averages and root mean square (r.m.s.) fluctuations are compared and discussed. Energy minimization has been carried out on selected MD simulated points in order to analyze the characteristics of different conformations.
Resumo:
The representation of morphologically complex words in the mental lexicon and their neurocognitive processing has been a vigorously debated topic in psycholinguistics and the cognitive neuroscience of language. This thesis investigates the effect of stimulus modality on morphological processing, the spatiotemporal dynamics of the neural processing of inflected (e.g., work+ed ) and derived (e.g., work+er ) words and their interaction, using the Finnish language. Overall, the results suggest that the constituent morphemes of isolated written and spoken inflected words are accessed separately, whereas spoken derived words activate both their full form and the constituent morphemes. The processing of both spoken and written inflected words elicited larger N400 responses than monomorphemic words (Study I), whereas the responses to spoken derived words did not differ from those to monomorphemic words (Study IV). Spoken inflected words elicited a larger left-lateralized negativity and greater source strengths in the left temporal cortices than derived words (Study IV). Thus, the results suggest different cortical processing for derived and inflected words. Moreover, the neural mechanisms underlying inflection and derivation seem to be not only different, but also independent as indexed by the linear summation of the responses to derived and inflected stimuli in a combined (derivation+inflection) condition (Study III). Furthermore, the processing of meaningless, spoken derived pseudowords was more difficult than for existing derived words, indexed by a larger N400-type effect for the pseudowords. However, no differences were observed between meaningful derived pseudowords and existing derived words (Study II). The results of Study II suggest that semantic compatibility between morphemes seems to have a crucial role in a successful morphological analysis. As a methodological note, time-locking the auditory event-related potentials/fields (ERP/ERF) to the suffix onset revealed the processes related to morphological analysis more precisely (Studies II and IV), which also enables comparison of the neural processes in different modalities (Study I).
Resumo:
This study aims at identifying the existing and potential resources, as well as recognizing the hinderances, for community-based ecotourism development in the Taita Hills in south-eastern Kenya. The indigenous mountain rain forests on the hills are rich in biodiversity, but severely degraded because of encroachment caused by the dynamics of increased population, socio-politics and economics. The research problems are based on the hypothesis that there is no tourism in the Taita Hills generating income for the local economy and high population density combined with poverty creates a need for alternative employment opportunities as well as for sustainable ways of forest resource management. The data for this study was gathered during two field trips in Kenya, in January-February 2004 and 2005, as a part of the Taita Project within the Department of Geography at the University of Helsinki. The qualitative methods used consist of RRA and PRA techniques, in-depth interviews, a structured questionnaire and literature analysis as well as attendance on excursions and a workshop with conservation experts and officials. Four case areas in the Taita Hills are studied. The study concludes that alternative livelihoods are needed among the Taita Hills´ rural population and community-based ecotourism is seen as a way of bringing financial benefits for households as well as reviving the fading cultural traditions and indigenous knowledge about forest use. The governmental policies, district level development plans and some NGOs support ecotourism development. The Forest Act 2005 forms base for local participation in forest management. The unique natural features, the welcoming Taita-culture and the location in the coastal tourism circle favour Taita Hills. However, this kind of development has its risks, such as too rapid change of sorest usage level and the exposure of communities to an ecotourism treadmill process. The costbenefit ration of marketing for hard ecotourists is generally low and the tourism infrastructure needs upgrading in the Taita Hills. More tight collaboration is important between the different level stakeholders working for conservation and development. Community-based ecotourism in Taita Hills, when carefully planned and managed, could be one opportunity for Kenya to diversify its tourism product supply and for forestadjacent communities to gain tangible benefits on a sustainable basis from forests.
Resumo:
Accessibility is a crucial factor for interaction between areas in economic, cultural, political and environmental terms. Therefore, information concerning accessibility is relevant for informed decision making, planning and research. The Loreto region in the Peruvian Amazonia provides an interesting scene for an accessibility study. Loreto is sparsely populated and because there are few roads in the region, in practice all movement and transportation happens along the river network. Due to the proximity of the Andes, river dynamics are strong and annual changes in water level combined with these dynamic processes constantly reshape accessibility patterns of the region. Selling non-timber forest products (NTFP) and agricultural products (AP) in regional centres is an important income source for local rain forest dwellers. Thus, accessibility to the centres is crucial for the livelihood of local population. -- In this thesis I studied how accessible the regional centre Iquitos is from other parts of Loreto. In addition, I studied the regional NTFP/AP trade patterns and compared them with patterns of accessibility. Based on GPS-measurements, using GIS, I created a time-distance surface covering Loreto. This surface describes the time-distance to Iquitos, along the river network. Based on interview material, I assessed annual changes to accessibility patterns in the region. The most common regional NTFP/AP were classified according to the amount of time they can be preserved, and based on the accessibility surface, I modelled a catchment area for each of these product classes. -- According to my results, navigation speeds vary considerably in different parts of the river network, depending on river types, vessels, flow direction and season. Navigating downstream is, generally, faster than upstream navigation. Thus, Iquitos is better accessible from areas situated south and south west of the city, like along the rivers Ucayali and Marañon. Differences in accessibility between different seasons are also substantial: during the dry season navigation is slower due to lower water levels and emerging sand bars. Regularly operating boats follow routes only along certain rivers and close to Iquitos transport facilities are more abundant than in more distant areas. Most of the products present in Iquitos market places are agricultural products, and the share of NTFP is significantly smaller. Most of the products were classified in product class 2, and the catchment area for these products is rather small. Many products also belonged to class 5, and the catchment area for these products reaches up to the edges of my study area, following the patterns of the river network. -- The accessibility model created in this study predicts travel times relatively well, although in some cases the modelled time-distances are substantially shorter than observed time-distances. This is partly caused by the fact that real-life navigation routes are more complicated than the modelled routes. Rain forest dwellers having easier access to Iquitos have more opportunities in terms of the products they decide to market. Thus, they can better take advantage of other factors affecting the market potential of different products. -- In all, understanding spatial variation in accessibility is important. In the Amazonian context it is difficult to combine the accessibility-related needs of the local dwellers with conservation purposes and the future challenge lies in finding solution that satisfy both of these needs.
Resumo:
A recently developed microscopic theory of solvation dynamics in real dipolar liquids is used to calculate, for the first time, the solvation time correlation function in liquid acetonitrile, water and methanol. The calculated results are in excellent agreement with known experimental and computer simulation studies.
Resumo:
The subject of my doctoral thesis is the social contextuality of Finnish theater director, Jouko Turkka's (b. 1942) educational tenure in the Theater Academy of Finland 1982 1985. Jouko Turkka announced in the opening speech of his rectorship in 1982 that Finnish society had undergone a social shift into a new cultural age, and that actors needed new facilities like capacity, flexibility, and ability for renewal in their work. My sociological research reveals that Turkka adapted cultural practices and norms of new capitalism and new liberalism, and built a performance environment for actors' educational work, a real life simulation of a new capitalist workplace. Actors educational praxis became a cultural performance, a media spectacle. Turkka's tenure became the most commented upon and discussed era in Finnish postwar theater history. The sociological method of my thesis is to compare information of sociological research literature about new capitalist work, and Turkka's educational theater work. In regard to the conceptions of legitimation, time, dynamics, knowledge, and social narrative consubstantial changes occurred simultaneously in both contexts of workplace. I adapt systems and chaos theory's concepts and modules when researching how a theatrical performance self-organizes in a complex social space and the space of Information. Ilya Prigogine's chaos theoretic concept, fluctuation, is the central social and aesthetic concept of my thesis. The chaos theoretic conception of the world was reflected in actors' pedagogy and organizational renewals: the state of far from equilibrium was the prerequisite of creativity and progress. I interpret the social and theater's aesthetical fluctuations as the cultural metaphor of new capitalism. I define the wide cultural feedback created by Turkka's tenure of educational praxis, and ideas adapted from the social context into theater education, as an autopoietic communicative process between theater education and society: as a black box, theater converted the virtual conception of the world into a concrete form of an actor's psychophysical praxis. Theater educational praxis performed socially contextual meanings referring to a subject's position in the social change of 1980s Finland. My other theoretic framework lies close to the American performance theory, with its close ties to the social sciences, and to the tradition of rhetoric and communication: theater's rhetorical utility materializes quotidian cultural practices in a theatrical performance, and helps the audience to research social situations and cultural praxis by mirroring them and creating an explanatory frame.
Photodissociation dynamics of small molecules: Dissociation of alkyl iodides in the near ultraviolet
Resumo:
The proton second moment M2 and spin-lattice relaxation time T1 have been measured in ammonium tribromo stannate (NH4SnBr3) in the temperature range 77–300 K, to determine the ammonium dynamics. The continuous wave signal is strong and narrow at 77 and 300 K but has revealed an interesting intensity anomaly between 210 and 125 K. T1 shows a maximum (13 s) around 220 K. No minimum in the T1 vs 1000/T plot was observed down to 77 K. M2 and T1 results are interpreted in terms of NH+4 ion dynamics. The activation energy Ea for NH+4 ion reorientation is estimated to be 1.4 kcal mol−1.
Resumo:
Several recent theoretical and computer simulation studies have considered solvation dynamics in a Brownian dipolar lattice which provides a simple model solvent for which detailed calculations can be carried out. In this article a fully microscopic calculation of the solvation dynamics of an ion in a Brownian dipolar lattice is presented. The calculation is based on the non‐Markovian molecular hydrodynamic theory developed recently. The main assumption of the present calculation is that the two‐particle orientational correlation functions of the solid can be replaced by those of the liquid state. It is shown that such a calculation provides an excellent agreement with the computer simulation results. More importantly, the present calculations clearly demonstrate that the frequency‐dependent dielectric friction plays an important role in the long time decay of the solvation time correlation function. We also find that the present calculation provides somewhat better agreement than either the dynamic mean spherical approximation (DMSA) or the Fried–Mukamel theory which use the simulated frequency‐dependent dielectric function. It is found that the dissipative kernels used in the molecular hydrodynamic approach and in the Fried–Mukamel theory are vastly different, especially at short times. However, in spite of this disagreement, the two theories still lead to comparable results in good agreement with computer simulation, which suggests that even a semiquantitatively accurate dissipative kernel may be sufficient to obtain a reliable solvation time correlation function. A new wave vector and frequency‐dependent dissipative kernel (or memory function) is proposed which correctly goes over to the appropriate expressions in both the single particle and the collective limits. This form is expected to lead to better results than all the existing descriptions.