926 resultados para periodontic device
Resumo:
Postprint
Resumo:
We report the development of a practical ultrafast allelic profiling assay for the analysis of short tandem repeats (STRs) by using a highly optimized microfluidic electrophoresis device. We have achieved baseline-resolved electrophoretic separations of single-locus STR samples in 30 sec. Analyses of PCR samples containing the four loci CSF1PO, TPOX, THO1, and vWA (abbreviated as CTTv) were performed in less than 2 min. This constitutes a 10- to 100-fold improvement in speed relative to capillary or slab gel systems. The separation device consists of a microfabricated channel 45 μm × 100 μm in cross section and 26 mm in length, filled with a replaceable polyacrylamide matrix operated under denaturing conditions at 50°C. A fluorescently labeled STR ladder was used as an internal standard for allele identification. Samples were prepared by standard procedures and only 4 μl was required for each analysis. The device is capable of repetitive operation and is suitable for automated high-speed and high-throughput applications.
Resumo:
We have micromachined a silicon-chip device that transports DNA with a Brownian ratchet that rectifies the Brownian motion of microscopic particles. Transport properties for a DNA 50-mer agree with theoretical predictions, and the DNA diffusion constant agrees with previous experiments. This type of micromachine could provide a generic pump or separation component for DNA or other charged species as part of a microscale lab-on-a-chip. A device with reduced feature size could produce a size-based separation of DNA molecules, with applications including the detection of single-nucleotide polymorphisms.
Resumo:
Efficient and safe heparin anticoagulation has remained a problem for continuous renal replacement therapies and intermittent hemodialysis for patients with acute renal failure. To make heparin therapy safer for the patient with acute renal failure at high risk of bleeding, we have proposed regional heparinization of the circuit via an immobilized heparinase I filter. This study tested a device based on Taylor-Couette flow and simultaneous separation/reaction for efficacy and safety of heparin removal in a sheep model. Heparinase I was immobilized onto agarose beads via cyanogen bromide activation. The device, referred to as a vortex flow plasmapheretic reactor, consisted of two concentric cylinders, a priming volume of 45 ml, a microporous membrane for plasma separation, and an outer compartment where the immobilized heparinase I was fluidized separately from the blood cells. Manual white cell and platelet counts, hematocrit, total protein, and fibrinogen assays were performed. Heparin levels were indirectly measured via whole-blood recalcification times (WBRTs). The vortex flow plasmapheretic reactor maintained significantly higher heparin levels in the extracorporeal circuit than in the sheep (device inlet WBRTs were 1.5 times the device outlet WBRTs) with no hemolysis. The reactor treatment did not effect any physiologically significant changes in complete blood cell counts, platelets, and protein levels for up to 2 hr of operation. Furthermore, gross necropsy and histopathology did not show any significant abnormalities in the kidney, liver, heart, brain, and spleen.
Resumo:
A new humidifier for use during mechanical ventilation in endotracheally intubated patients is described and tested. The humidifier is based on a heat-moisture exchanger, which absorbs the expired heat and moisture and releases it into the inspired air. External heat and water are then added at the patient side of the heat-moisture exchanger, so that the inspired gas should reach 100% humidity (44 mg/l) at 37°C. In bench tests using constant and decelerating inspiratory flow and minute volumes of 3–25 l the device gave an absolute humidity of 41–44 mg/l, and it reduced the amount of water consumed in eight mechanically ventilated patients compared with a conventional active humidifier. During a 24-h test period there was no water condensation in the ventilator tubing with the new device.
Resumo:
A microwave-based thermal nebulizer (MWTN) has been employed for the first time as on-line preconcentration device in inductively coupled plasma atomic emission spectrometry (ICP-AES). By the appropriate selection of the experimental conditions, the MWTN could be either operated as a conventional thermal nebulizer or as on-line analyte preconcentration and nebulization device. Thus, when operating at microwave power values above 100 W and highly concentrated alcohol solutions, the amount of energy per solvent mass liquid unit (EMR) is high enough to completely evaporate the solvent inside the system and, as a consequence, the analyte is deposited (and then preconcentrated) on the inner walls of the MWTN capillary. When reducing the EMR to the appropriate value (e.g., by reducing the microwave power at a constant sample uptake rate) the retained analyte is swept along by the liquid-gas stream and an analyte-enriched aerosol is generated and next introduced into the plasma cell. Emission signals obtained with the MWTN operating in preconcentration-nebulization mode improved when increasing preconcentration time and sample uptake rate as well as when decreasing the nozzle inner diameter. When running with pure ethanol solution at its optimum experimental conditions, the MWTN in preconcentration-nebulization mode afforded limits of detection up to one order of magnitude lowers than those obtained operating the MWTN exclusively as a nebulizer. To validate the method, the multi-element analysis (i.e. Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Pb and Zn) of different commercial spirit samples in ICP-AES has been performed. Analyte recoveries for all the elements studied ranged between 93% and 107% and the dynamic linear range covered up to 4 orders of magnitude (i.e. from 0.1 to 1000 μg L−1). In these analysis, both MWTN operating modes afforded similar results. Nevertheless, the preconcentration-nebulization mode permits to determine a higher number of analytes due to its higher detection capabilities.
Resumo:
Tese de mestrado integrado em Engenharia Biomédica e Biofísica, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2016
Resumo:
Mentre navighiamo siamo veramente certi che i nostri dati e la nostra privacy siano al sicuro? I browser e le tecnologie di cui fanno uso possono rivelare una miriade di informazioni. Al crescere delle informazioni reperibili, si inizia a superare una massa critica che può permettere l'identificazione. Il device fingerprinting è proprio il rilevamento di questa tipologia di dati. HTML5 e le nuove API che esso mette a disposizione aumentano a dismisura le modalità per fare fingerprinting. Durante lo sviluppo della presente tesi è stato realizzato un framework molto potente che verrà mostrato nel dettaglio. Come a seguito di un disastro aereo, l'ingegneria aeronautica si mette all'opera per scovare i punti deboli allo scopo di rendere più robusti gli aerei di nuova generazione, noi con la presente tesi vogliamo dare il nostro contributo al miglioramento del web del futuro. Affinchè la nostra privacy sia veramente nelle nostre mani e possiamo essere artefici del nostro domani.