910 resultados para park visitation
Resumo:
Juridical Review. Looks at the question of whether an individual shareholder has title to bring an action on the company's behalf in exceptional circumstances, as considered in the cases of Anderson v Hogg and Wilson v Inverness Retail & Business Park Ltd. Examines the difference between English and Scottish law in this area, notwithstanding the reliance on English case law in Scotland due to the small number of Scottish cases decided. Looks at progress towards the reform of company law and the impact it will have on a shareholder's title to sue.
Resumo:
Acoustic velocity meter (AVM) sites, located both distant and adjacent to canal water control structures, were constructed and calibrated in L-31W borrow canal and Canal 111 (C-111) to measure canal water velocity. Data were used to compute monthly discharge volumes and overall water budgets for several canal reaches from August 1994 to May 1996. The water budgets indicated extensive aquifer inflows in L-31W associated, in part, with S-332 pump station return flows. Canal and groundwater piezometer data showed 5 distinct hydrologic scenarios (distinguished by the direction and magnitude of hydraulic gradients) in the important Frog Pond area on the eastern boundary of the Everglades National Park. Most of the water lost from C-111 was via surface water losses near the outlet of the system, close to Florida Bay. The distribution of flows during the study suggest an alteration of the present South Dade Conveyance System modification plan to improve water deliveries to Taylor Slough and the Eastern Panhandle of the Everglades National Park. ^
Resumo:
The purpose of this study was to investigate the beliefs and attitudes of nurses regarding the effects of visitation in pediatric intensive care units (PICU).^ Questionnaires were used to gather data from nurses (n = 48) in four study sites. Data were analyzed according to the Theory of Reasoned Action.^ A predominant theme among the beliefs was that visitation should be individualized. It was found that PICU nurses have more positive attitudes regarding traditional visitation as opposed to open visitation (p $<$.01). Significant relationships were found between nurses' years of education and attitudes toward traditional (p $<$.01) and open (p $<$.05) visitation.^ In light of the literature suggesting the positive effects of open visitation, it appears that PICU nurses' attitudes may present a barrier when implementing open policies. Since years of education shows a positive correlation with nurses' attitudes, educational intervention may be helpful in overcoming this obstacle. ^
Resumo:
Hydrology and a history of oligotrophy unite the massive landscape comprising freshwater marsh in Everglades National Park. With restoration of water flow to the Everglades, phosphorus (P) enrichment, both from agricultural and domestic sources, may increase nutrient load to the marsh ecosystem. Previous research of P enrichment of Everglades soil, periphyton, and macrophytes revealed each of these ecosystem components responds to increased P loads with increased production and nutrient content. Interactions among these ecosystem components and how P affects the magnitude and direction of interaction are poorly understood and are the focus of my research. Here I present results of a two-year, two-factor experiment of P enrichment and manipulation in Everglades National Park. I quantified biomass, nutrient content, and production for periphyton and macrophyes and found macrophyte removal drives change in nutrient content, biomass, and production of periphyton. Periphyton removal did not appear to control macrophyte dynamics. Soil chemical and physical characteristics were explained primarily by site differences but there was an enrichment effect of soil porewater nitrite + nitrate, nitrite, and soluble reactive phosphorus. Flocculent materials production and depth were significantly affected by macrophyte removal where depth and production were significantly greater with the no macrophyte treatment. The dominant macrophyte of the marsh, Eleocharis cellulosa, increased more in the unenriched marsh than in the enriched marsh. The combination of these findings suggests that dynamics in floc and periphyton are controlled primarily by the presence of periphyton and that this relationship is significantly affected by low-level P enrichment. These results may be valuable in their application to both managers and policy makers who are involved in the Everglades restoration process. ^
Resumo:
Gap succession is a significant determinant of structure and development in most forest communities. Lightning strikes are an important source of canopy gaps in the mangrove forest of Everglades National Park. I investigated the successional dynamics of lightning-initiated canopy gaps to determine their influence on forest stand structure of the mixed mangrove forests ( Rhizophora mangle, Laguncularia racemosa, and Avicennia germinans ) of the Shark River. I measured gap size, gap shape, light environment, soil characteristics, woody debris, and fiddler crab abundance. I additionally measured the vegetative composition in a chronosequences of gap successional stages (new, recruiting, and growing gaps). I recorded survivorship, recruitment, growth and soil elevation dynamics within a subset of new and growing gaps. I determined the relationship between intact forest soil elevation and site hydrology in order to interpret the effects of lightning disturbance on soil elevation dynamics. ^ Gap size averaged 289 ± 20 m2 (± 1SE) and light transmittance decreased exponentially as gaps filled with saplings. Fine woody debris was highest in recruiting gaps. Soil strength was lower in the gaps than in the forest. The abundance of large and medium fiddler crab burrows increased linearly with total seedling abundance. Soil surface elevation declined in newly formed lightning gaps; this loss was due to a combination of superficial erosion (8.5 mm) and subsidence (60.9 mm). A distinct two-cohort recruitment pattern was evident in the seedling/sapling surveys, suggesting a partitioning of the succession between individuals present before and after lightning strike. In new gaps, the seedling recruitment rate was twice as high as in forest and the sapling population increased. At the growing gap stage, R. mangle seedling mortality was 10 times greater and sapling mortality was 13 times greater than recruitment. Growing gaps had reduced seedling stem elongation, sapling growth and adult growth. However, a few individuals (R. mangle saplings) were able to recruit into the adult life stage. In conclusion, the high density of R. mangle seedlings and saplings imply that lightning strike disturbances in these mangrove forests favor their recruitment over that of A. germinans and L. racemosa. ^
Resumo:
In this study, I determined the identity, taxonomic placement, and distribution of digenetic trematodes parasitizing the snails Pomacea paludosa and Planorbella duryi at Pa-hay-okee, Everglades National Park. I also characterized temporal and geographic variation in the probability of parasite infection for these snails based on two years of sampling. Although studies indicate that digenean parasites may have important effects both on individual species and the structure of communities, there have been no studies of digenean parasitism on snails within the Everglades ecosystem. For example, the endangered Everglade Snail Kite, a specialist that feeds almost exclusively on Pomacea paludosa, and is known to be a definitive host of digenean parasites, may suffer direct and indirect effects from consumption of parasitized apple snails. Therefore, information on the diversity and abundance of parasites harbored in snail populations in the Everglades should be of considerable interest for management and conservation of wildlife. Juvenile digeneans (cercariae) representing 20 species were isolated from these two snails, representing a quadrupling of the number of species known. Species were characterized based on morphological, morphometric, and sequence data (18S rDNA, COI, and ITS). Species richness of shed cercariae from P. duryi was greater than P. paludosa, with 13 and 7 species respectively. These species represented 14 families. P. paludosa and P. duryi had no digenean species in common. Probability of digenean infection was higher for P. duryi than P. paludosa and adults showed a greater risk of infection than juveniles for both of these snails. Planorbella duryi showed variation in probability of infection between sampling sites and hydrological seasons. The number of unique combinations of multi-species infections was greatest among P. duryi individuals, while the overall percentage of multi-species infections was greatest in P. paludosa. Analyses of six frequently-observed multiple infections from P. duryi suggest the presence of negative interactions, positive interactions, and neutral associations between larval digeneans. These results should contribute to an understanding of the factors controlling the abundance and distribution of key species in the Everglades ecosystem and may in particular help in the management and recovery planning for the Everglade Snail Kite.
Resumo:
This study investigates the use of larger foraminifera in determining the biostratigraphy of the Avon Park Formation and the Ocala Limestone in central Florida. Sedimentary rocks of the Avon Park Formation are the oldest exposed deposits in the state of Florida, and together with the Ocala Limestone comprise a part of the confining unit of the Floridan Aquifer, a major source of Florida's water supply. ^ Material from the ROMP 29A core collected by the U.S. Geological Survey was evaluated and compared to previous studies of the biostratigraphy of the formations. The larger foraminifera of the Avon Park Formation were examined in thin section, and those of the Ocala Limestone were free specimens. The larger foraminifera from both units were described and identified, and the biostratigraphy determined. The morphological features of the larger foraminifera of the Ocala Limestone were measured and analyzed at various depths within the ROMP 29A core.^ The Avon Park Formation contains predominantly the shallow-water, conical foraminifera Fallotella cookei, Fallotella floridana, Pseudochrysalidina floridana, Coleiconus christianaensis, Coleiconus sp. A, Coskinolina sp. A, Coskinolina sp. B, Fallotella sp. A, Fallotella sp. B, Fabularia vaughani and larger miliolids. ^ The Ocala Limestone contains a different, deeper water assemblage that included the larger foraminifera Heterostegina ocalana, Lepidocyclina ocalana varieties, Lepidocyclina chaperi, Lepidocyclina pustulosa, Nummulites willcoxi, Nummulites striatoreticulatus, Nummulites floridensis and Pseudophragmina spp. A, B, and C. The age of the Avon Park Formation was corroborated by the occurrence of the biomarker echinoid Neolaganum dalli as Eocene, and the Ocala Limestone also contained Eocene larger foraminifera with Eocene to possibly Oligocene calcareous nannofossils. The distribution of the larger foraminifera of the Avon Park Formation was correlated with the subtidal and peritidal zones of the continental shelf. Analyses of variance showed that the changes in measurements of the morphology in Heterostegina ocalana, Lepidocyclina spp. and Nummulites spp. were correlated with change in the depositional environments.^
Resumo:
We analyzed the dynamics of freshwater marsh vegetation of Taylor Slough in eastern Everglades National Park for the 1979 to 2003 period, focusing on cover of individual plant species and on cover and composition of marsh communities in areas potentially influenced by a canal pump station (‘‘S332’’) and its successor station (‘‘S332D’’). Vegetation change analysis incorporated the hydrologic record at these sites for three intervals: pre-S332 (1961–1980), S332 (1980–1999), post-S332 (1999–2002). During S332 and post-S332 intervals, water level in Taylor Slough was affected by operations of S332 and S332D. To relate vegetation change to plot-level hydrological conditions in Taylor Slough, we developed a weighted averaging regression and calibration model (WA) using data from the marl prairies of Everglades National Park and Big Cypress National Preserve. We examined vegetation pattern along five transects. Transects 1–3 were established in 1979 south of the water delivery structures, and were influenced by their operations. Transects 4 and 5 were established in 1997, the latter west of these structures and possibly under their influence. Transect 4 was established in the northern drainage basin of Taylor Slough, beyond the likely zones of influence of S332 and S332D. The composition of all three southern transects changed similarly after 1979. Where muhly grass (Muhlenbergia capillaris var. filipes) was once dominant, sawgrass (Cladium jamaicense), replaced it, while where sawgrass initially predominated, hydric species such as spikerush (Eleocharis cellulosa Torr.) overtook it. Most of the changes in species dominance in Transects 1–3 occurred after 1992, were mostly in place by 1995–1996, and continued through 1999, indicating how rapidly vegetation in seasonal Everglades marshes can respond to hydrological modifications. During the post-S332 period, these long-term trends began reversing. In the two northern transects, total cover and dominance of both muhly grass and sawgrass increased from 1997 to 2003. Thus, during the 1990’s, vegetation composition south of S332 became more like that of long hydroperiod marshes, but afterward it partially returned to its 1979 condition, i.e., a community characteristic of less prolonged flooding. In contrast, the vegetation change along the two northern transects since 1997 showed little relationship to hydrologic status.
Resumo:
We report on net ecosystem production (NEP) and key environmental controls on net ecosystem exchange (NEE) of carbon dioxide (CO2) between a mangrove forest and the atmosphere in the coastal Florida Everglades. An eddy covariance system deployed above the canopy was used to determine NEE during January 2004 through August 2005. Maximum daytime NEE ranged from −20 to −25 mmol (CO2) m−2 s−1 between March and May. Respiration (Rd) was highly variable (2.81 ± 2.41 mmol (CO2) m−2 s−1), reaching peak values during the summer wet season. During the winter dry season, forest CO2 assimilation increased with the proportion of diffuse solar irradiance in response to greater radiative transfer in the forest canopy. Surface water salinity and tidal activity were also important controls on NEE. Daily light use efficiency was reduced at high (>34 parts per thousand (ppt)) compared to low (ppt) salinity by 46%. Tidal inundation lowered daytime Rd by ∼0.9 mmol (CO2) m−2 s−1 and nighttime Rd by ∼0.5 mmol (CO2) m−2 s−1. The forest was a sink for atmospheric CO2, with an annual NEP of 1170 ± 127 g C m−2 during 2004. This unusually high NEP was attributed to year‐round productivity and low ecosystem respiration which reached a maximum of only 3 g C m−2 d−1. Tidal export of dissolved inorganic carbon derived from belowground respiration likely lowered the estimates of mangrove forest respiration. These results suggest that carbon balance in mangrove coastal systems will change in response to variable salinity and inundation patterns, possibly resulting from secular sea level rise and climate change. Citation: Barr, J. G., V. Engel, J. D. Fuentes,
Resumo:
Tree islands in the Shark River Slough of the Everglades National Park (ENP), in the southern state of Florida in the United States, are part of a wetland system of densely vegetated ridges interspersed within relatively open sloughs. Human alteration of this system has had dramatic negative effects on the landscape of the region and restoration efforts will require adjusting the hydrology of the region to assure the preservation of these important ecologic features. The primary objectives of this study were to document the hydrology in the vicinity of tree islands in ENP by measuring velocities in time and space and by characterizing suspended sediments. The results of such measurements were interpreted with respect to factors that may limit tree island growth. The measurements were conducted in the vicinity of three tree islands known as Black Hammock (BH), Gumbo Limbo (GL), and an unnamed island that was named for this study as Satin Leaf (SL). Acoustical Doppler Velocity (ADV) meters were used for measuring the low velocities of the Everglades water flow. Properties of suspended sediments were characterized through measurements of particle size distribution, turbidity, concentration and particle density. Mean velocities observed at each of the tree islands varied from 0.9 to 1.4 cm/s. Slightly higher mean velocities were observed during the wet season (1.2–1.6 cm/s) versus the dry season (0.8–1.3 cm/s). Maximum velocities of more than 4 cm/s were measured in areas of Cladium jamaicense die-off and at the hardwood hammock (head) of the islands. At the island’s head, water is channelized around obstructions such as tree trunks in relatively rapid flow, which may limit the lateral extent of tree island growth. Channelization is facilitated by shade from the tree canopy, which limits the growth of underwater vegetation thereby minimizing the resistance to flow and limiting sediment deposition. Suspended sediment concentrations were low (0.5–1.5 mg/L) at all study sites and were primarily of organic origin. The mean particle size of the suspended sediments was 3 μm with a distribution that was exponential. Critical velocities needed to cause re-suspension of these particles were estimated to be above the actual velocities observed. Sediment transport within the water column appears to be at a near steady state during the conditions evaluated with low rates of sediment loss balanced by presumably the release of equivalent quantities of particles of organic origin. Existing hydrologic conditions do not appear to transport sufficient suspended sediments to result in the formation of tree islands. Of interest would be to collect hydrologic and sediment transport data during extreme hydrologic events to determine if enough sediment is transported under these conditions to promote sufficient sediment accumulations.