994 resultados para oral anticoagulant response
Resumo:
Cytokines produced by T-cells in periodontal lesions may determine the nature of the adaptive immune response. Since different antigen-7 presenting cells (APC) may direct the Th1/Th2 response, P. gingivalis-specific T-cell lines were established by different APC subpopulations, and their cytokine profiles were determined. Peripheral blood mononuclear cells induced similar percentages of IL-4+ and IFN-gamma+ T-cells and lower percentages of IL-10+ T-cells, Epstein-Barr virus-trans formed B-cells (LCL) induced higher percentages of IL-4+ cells than IFN-gamma+ cells, with lower percentages of IL-10+ cells. Peripheral blood mononuclear cells induced a higher percent of IFN-gamma+ CD8 cells than LCL (p = 0.004). Purified B-cells, monocytes, and dendritic cells induced similar percentages of IL-4+ and IFN-gamma+ cells, although again, the percentage of IL-10+ cells was lower. The results of the present study have demonstrated that, as measured by FACS analysis of intracytoplasmic cytokines, P. gingivalis-specific T-cells produce both Th1 and Th2 cytokines, regardless of the APC population.
Resumo:
T cell cytokine profiles and specific serum antibody levels in five groups of BALB/c mice immunized with saline alone, viable Fusobacterium nucleatum ATCC 25586, viable Porphyromonas gingivalis ATCC 33277, F. nucleatum followed by P. gingivalis and P. gingivalis followed by F nucleatum were determined. Splenic CD4 and CD8 cells were examined for intracytoplasmic interleukin (IL)-4, interferon (IFN)-gamma and IL-10 by dual colour flow cytometry and the levels of serum anti-F. nucleatum and anti-P. gingivalis antibodies determined by an ELISA. Both Th1 and Th2 responses were demonstrated by all groups, and while there were slightly lower percentages of cytokine positive T cells in mice injected with F. nucleatum alone compared with the other groups immunized with bacteria., F nucleatum had no effect on the T cell production of cytokines induced by P gingivalis in the two groups immunized with both organisms. However, the percentages of cytokine positive CD8 cells were generally significantly higher than those of the CD4 cells. Mice immunized with F nucleatum alone had high levels of serum anti-E nucleatum antibodies with very low levels of P. gingivalis antibodies, whereas mice injected with P gingivalis alone produced anti-P. gingivalis antibodies predominantly. Although the levels of anti-E nucleatum antibodies in mice injected with E nucleatum followed by P. gingivalis were the same as in mice immunized with F nucleatum alone, antibody levels to P. gingivalis were very low. In contrast, mice injected with P. gingivalis followed by F nucleatum produced equal levels of both anti-P. gingivalis and anti-F nucleatum antibodies, although at lower levels than the other three groups immunized with bacteria, respectively. Anti-Actinobacillus actitiomycetemcomitans, Bacteroides forsythus and Prevotella intermedia serum antibody levels were also determined and found to be negligible. In conclusion, F nucleatum immunization does not affect the splenic T cell cytokine response to P. gingivalis. However, F nucleatum immunization prior to that of P. gingivalis almost completely inhibited the production of anti-P gingivalis antibodies while P. gingivalis injection before F. nucleatum demonstrated a partial inhibitory effect by P. gingivalis on antibody production to F. nucleatum. The significance of these results with respect to human periodontal disease is difficult to determine. However, they may explain in part differing responses to P. gingivalis in different individuals who may or may not have had prior exposure to F. nucleatum. Finally, the results suggested that P. gingivalis and F. nucleatum do not induce the production of cross-reactive antibodies to other oral microorganisms.
Resumo:
Both antigen-specific and non-specific mechanisms may be involved in the pathogenesis of oral lichen planus (OLP). Antigen-specific mechanisms in OLP include antigen presentation by basal keratinocytes and antigen-specific keratinocyte killing by CD8(+) cytotoxic T-cells. Non-specific mechanisms include mast cell degranulation and matrix metalloproteinase (MMP) activation in OLP lesions. These mechanisms may combine to cause T-cell accumulation in the superficial lamina propria, basement membrane disruption, intra-epithelial T-cell migration, and keratinocyte apoptosis in OLP. OLP chronicity may be due, in part, to deficient antigen-specific TGF-beta1-mediated immunosuppression. The normal oral mucosa may be an immune privileged site (similar to the eye, testis, and placenta), and breakdown of immune privilege could result in OLP and possibly other autoimmune oral mucosal diseases. Recent findings in mucocutaneous graft-versus-host disease, a clinical and histological correlate of lichen planus, suggest the involvement of TNF-alpha, CD40, Fas, MMPs, and mast cell degranulation in disease pathogenesis. Potential roles for oral Langerhans cells and the regional lymphatics in OLP lesion formation and chronicity are discussed. Carcinogenesis in OLP may be regulated by the integrated signal from various tumor inhibitors (TGF-beta1, TNF-alpha, IFN-gamma, IL-12) and promoters (MIF, MMP-9). We present our recent data implicating antigen-specific and non-specific mechanisms in the pathogenesis of OLP and propose a unifying hypothesis suggesting that both may be involved in lesion development. The initial event in OLP lesion formation and the factors that determine OLP susceptibility are unknown.
Resumo:
A wide range of animals suffer from periodontal disease. However, there is very little reported on disease and oral micro-biota of Australian animals. Therefore, the oral cavity of 90 marsupials was examined for oral health status. Plaque samples were collected from the subgingival margins using curettes; or swabs. Plaque samples were plated onto. non-selective trypticase soy agar plates, selective trypticase soy agar, non-selective and selective Wilkens Chalgrens, Agar. Plates were incubated in an anaerobic atmosphere and examined after 7-14 days for the presence of black-brown-pigmented colonies. A combination of morphological and biochemical tests were used (colonial morphology, pigmentation, aerobic growth, Gram reaction, fluorescence under long-wave UV light (360 nm), production of catalase, enzymatic activity with fluorogenic substrates and haemagglutination of sheep red cells) to identify these organisms. Black-pigmented bacteria were cultivated from the plaque of 32 animals including six eastern grey kangaroos, a musky rat kangaroo, a whiptail and a red-necked wallaby, 18 koalas, a bandicoot and five brushtail possums. No black-pigmented colonies were cultivated from squirrel or sugar gliders or quokkas or from marsupial mice. The majority of isolates were identified as Porphyromonas gingivalis-like species with the higher prevalence of isolation from the oral cavity of macropods (the kangaroos and wallabies). Oral diseases, such as gingivitis can be found in native Australian animals with older koalas having an increase in disease indicators and black-pigmented bacteria. Non-selective Wilkens Chalgren Agar was the medium of choice for the isolation of black-pigmented bacteria. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Background: The aims of this study were to identify differences in oral cancer incidence and mortality between sexes, age groups, oral sites and Australian States and Territories and recent trends in oral cancer incidence, mortality and age-profile over time. Methods: Data were obtained from the Australian Institute for Health and Welfare and were age-standardized to the Australian 1991 Population Standard. Differences and trends were assessed with the Wilcoxon matched-pairs signed-ranks test and the Spearman correlation test, respectively. Results: In Australia in 1996, there were 2173 new oral cancers and 400 deaths due to oral cancer, the majority of oral cancers were in the 60+ age group, oral cancer affected men more than women (>2:1), lip cancer accounted for more than 50 per cent of oral cancers and the oral cancer mortality-to-incidence (M:I) ratio was greatest in ACT and NSW and least in QLD and SA. From 1983 to 1996, the annual incidence of lip cancer increased while the M:I ratio of lip cancer decreased. The annual incidence of cervical cancer decreased whereas the annual incidence of intra-oral cancer remained constant. The M:I ratio of cervical cancer was consistently lower than the MA ratio of intra-oral cancer. Conclusions; Reducing exposure to environmental carcinogens, increasing public awareness and population screening may reduce the incidence and mortality of oral cancer in Australia.
Resumo:
Background: This project investigated the aetiology of dental and oral trauma in a population in southeast Queensland. The literature shows there is a lack of dental trauma studies which are representative of the general Australian population. Method: Twelve suburbs in the south-east district of Queensland were randomly selected according to population density in these suburbs for each 25th percentile. All dental clinics in these suburbs were eligible to participate. Patients presenting with dental and oral trauma were eligible to participate. Results: A total of 197 patients presented with dental/oral trauma over a 12 month period. The age of patients ranged from 1-64 years whilst the most frequently presenting age group was 6-10 years. There was a total of 363 injured teeth with an average of 1.8 injured teeth per patient. Males significantly outnumbered females in the incidence of trauma. Conclusions: The highest frequency of trauma occurred in the 6-10 year age group. Most injuries in this group occurred while playing or riding bicycles. In the next most prevalent trauma group, 16-20 years, trauma occurred as a result of fighting and playing sport. Overall, males significantly outnumbered females by approximately 1.8:1.0. The majority of injuries in the deciduous dentition were to periodontal tissues. In the secondary dentition most injuries were to hard dental tissue and pulp.
Resumo:
Background: We investigated basement membrane (BM) disruption and the distribution of mast cells (MCs) and T cell subsets, in oral lichen planus (OLP) and normal buccal mucosa (NBM) using immunohistochemistry. In OLP, there were increased numbers of tryptase(+) MCs in areas of BM disruption (P
Resumo:
Cell-surface proteoglycans participate in several biological functions including interactions with a variety of growth factors and cytokines. Regulation of syndecan-1 and -2 gene expression was investigated in human periodontal ligament fibroblasts (PDLF), osteoblasts (OB) and gingival fibroblasts (GF), in response to platelet-derived growth factor (PDGF-BB), transforming growth factor (TGF-beta(1)), and interleukin (IL-1beta) by Northern blot analyses. We also compared the effect of PDGF-BB and TGF-beta(1), separately and in combination, in the prolonged presence of IL-1beta on the expression of both syndecan genes. The results demonstrated that the three cell lines regulated the expression of syndecan-1 and -2 in response to growth factors and cytokines in different manners. These cell lines increased syndecan-1 mRNA levels in response to either PDGF-BB or TGF-beta(1) and decreased levels in response to IL-1beta. The effect of IL-1beta on syndecan-1 mRNA synthesis was partially reversed after adding PDGF-BB and TGF-beta(1), separately or in combination, in the presence of IL-1beta. In contrast, syndecan-2 mRNA level was markedly upregulated in response to either TGF-beta(1) or IL-1beta in OB when compared with the other two cell lines. However, the stimulatory effect of TGF-beta(1) on syndecan-2 mRNA production in OB was abolished in the prolonged presence of IL-1beta. These findings lend support to the notion that syndecan-1 and syndecan-2 have distinct functions which correlate with their source and functions within the periodontium.
Resumo:
Genetic and environmental sources of covariation among the P3(00) and online performance elicited in a delayed-response working memory task, and psychometric IQ assessed by the multidimensional aptitude battery, were examined in an adolescent twin sample. An association between frontal P3 latency and task performance (phenotypic r = -0.33; genotypic r = -0.49) was indicated, with genes (i.e. twin status) accounting for a large part of the covariation ( > 70%). In contrast, genes influencing P3 amplitude mediated only a small part (2%) of the total genetic variation in task performance. While task performance mediated 15% of the total genetic variation in IQ (phenotypic r = 0.22; genotypic r = 0.39) there was no association between P3 latency and IQ or P3 amplitude with IQ. The findings provide some insight into the inter-relationships among psychophysiological, performance and psychometric measures of cognitive ability, and provide support for a levels-of-processing genetic model of cognition where genes act on specific sub-components of cognitive processes.
Resumo:
Oral lichen planus (OLP) is a chronic inflammatory disease of unknown etiology. In this paper we review the clinical and histological features of OLP, process of OLP diagnosis, causes of OLP, management of OLP patients and medical treatment of OLP lesions. Approximately 0.2 per cent OLP patients develop intra-oral carcinoma each year compared with approximately 0.005 per cent Australian adults. Possible mechanisms of increased oral cancer risk in OLP patients are presented. The aims of current OLP therapy are to eliminate mucosal erythema and ulceration, alleviate symptoms and reduce the risk of oral cancer. Patient education may improve the outcomes of OLP therapy and further reduce the risk of oral cancer in OLP patients. Although OLP may be diagnosed clinically, appropriate specialist referral is required for: (i) histological diagnosis; (ii) assessment of causative/exacerbating factors, associated diseases and oral cancer risk; (iii) patient education and management; (iv) medical treatment; and (v) long-term review and re-biopsy as required.