901 resultados para on-line condition monitoring


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose - The aim of this paper is to present a synthetic chart based on the non-central chi-square statistic that is operationally simpler and more effective than the joint X̄ and R chart in detecting assignable cause(s). This chart will assist in identifying which (mean or variance) changed due to the occurrence of the assignable causes. Design/methodology/approach - The approach used is based on the non-central chi-square statistic and the steady-state average run length (ARL) of the developed chart is evaluated using a Markov chain model. Findings - The proposed chart always detects process disturbances faster than the joint X̄ and R charts. The developed chart can monitor the process instead of looking at two charts separately. Originality/value - The most important advantage of using the proposed chart is that practitioners can monitor the process by looking at only one chart instead of looking at two charts separately. © Emerald Group Publishing Limted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural Health Monitoring (SHM) denotes a system with the ability to detect and interpret adverse changes in a structure. One of the critical challenges for practical implementation of SHM system is the ability to detect damage under changing environmental conditions. This paper aims to characterize the temperature, load and damage effects in the sensor measurements obtained with piezoelectric transducer (PZT) patches. Data sets are collected on thin aluminum specimens under different environmental conditions and artificially induced damage states. The fuzzy clustering algorithm is used to organize the sensor measurements into a set of clusters, which can attribute the variation in sensor data due to temperature, load or any induced damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a versatile and easy-to-assemble measurement system for structural health monitoring (SHM) based on the electromechanical impedance (EMI) technique. The hardware of the proposed system consists only of a common data acquisition (DAQ) device with external resistors and allows real-time data acquisition from multiple sensors. Besides the low-cost compared to conventional impedance analyzers, the hardware and the software are simple and easier to implement than other measurement systems that have been recently proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The real-time monitoring of events in an industrial plant is vital, to monitor the actual conditions of operation of the machinery responsible for the manufacturing process. A predictive maintenance program includes condition monitoring of the rotating machinery, to anticipate possible conditions of failure. To increase the operational reliability it is thus necessary an efficient tool to analyze and monitor the equipments, in real-time, and enabling the detection of e.g. incipient faults in bearings. To fulfill these requirements some innovations have become frequent, namely the inclusion of vibration sensors or stator current sensors. These innovations enable the development of new design methodologies that take into account the ease of future modifications, upgrades, and replacement of the monitored machine, as well as expansion of the monitoring system. This paper presents the development, implementation and testing of an instrument for vibration monitoring, as a possible solution to embed in industrial environment. The digital control system is based on an FPGA, and its configuration with an open hardware design tool is described. Special focus is given to the area of fault detection in rolling bearings. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A obesidade é uma doença epidêmica, crônica, multifatorial e de alto risco, que afeta milhões de pessoas e provoca uma série de prejuízos sociais, emocionais e econômicos. A análise do comportamento busca compreender os comportamentos do indivíduo obeso que propiciam o surgimento e a manutenção desta condição e as relações deste indivíduo com o seu meio ambiente. Tradicionalmente, pesquisas sobre o tratamento da obesidade, embora utilizem estratégias comportamentais como o registro em automonitoração e treino de relato verbal, em geral enfatizam resultados não comportamentais como critério de sucesso no tratamento (ex. perda de peso). Todavia, alguns autores defendem o uso de critérios comportamentais nos tratamentos de saúde que resultem em melhorias na qualidade de vida, enfatizando a construção de repertórios saudáveis ao invés da eliminação de comportamentos ditos desadaptativos. Baseado no modelo construcional de Goldiamond, este estudo teve como objetivo verificar os efeitos de um treino em automonitoração e em relato verbal no estabelecimento e na manutenção, em curto prazo, de comportamentos de seguir regras nutricionais em adultos com obesidade. Participaram da pesquisa duas mulheres adultas com obesidade, em tratamento em uma clínica nutricional particular, e com dificuldades de adesão à dieta. A coleta de dados foi realizada em ambiente disponibilizado pelas participantes, predominantemente em ambiente domiciliar, em dias alternados, sendo constituída por cinco etapas: (1) Entrevistas de Linha de Base para identificação do repertório alimentar inicial; (2) Intervenção, realizada por meio de duas condições: (I) Treino de Automonitoração e (II) Treino de Relato Verbal; (3) Manutenção em curto prazo; (4) Follow-up; e (5) Encerramento: Entrevista Final, para avaliação dos resultados obtidos. Na condição I utilizou-se registros de automonitoração e de planejamento das refeições, enquanto que na condição II utilizou-se o relato verbal para o planejamento e o acesso à refeição-alvo realizada no dia anterior à entrevista. Em todas as entrevistas de intervenção foram conduzidas análises da consistência entre o registro/relato da refeição-alvo e as regras descritas no plano alimentar; análises dos custos e benefícios dos comportamentos de seguir ou não as regras nutricionais e identificação das variáveis determinantes para a emissão ou não dos comportamentos de seguir as regras nutricionais. Os treinos foram realizados com apenas uma refeição de cada vez até que se atingisse um dos critérios de mudança de refeição-alvo, sendo o principal a ocorrência de 60% de adesão em três entrevistas consecutivas. Para tanto, a cada entrevista era calculado o Índice de Adesão à Dieta (IAD) da refeição-alvo. Nos resultados, verificou-se que ambas as participantes atingiram o critério estabelecido em todas as refeições, com exceção do lanche da tarde. Inferiu-se a efetividade de ambos os treinos na instalação de comportamentos de auto-observação do repertório alimentar, entretanto foram modestos os resultados referentes ao autocontrole, sugerindo a necessidade de outras estratégias comportamentais, como treino de autocontrole, para a manutenção dos resultados do tratamento da obesidade. Discutiu-se sobre a complexidade do tratamento desta condição de saúde e a necessidade de uma visão ampla de tratamento que atue em outros contextos, além do foco na doença.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human reactions to vibration have been extensively investigated in the past. Vibration, as well as whole-body vibration (WBV), has been commonly considered as an occupational hazard for its detrimental effects on human condition and comfort. Although long term exposure to vibrations may produce undesirable side-effects, a great part of the literature is dedicated to the positive effects of WBV when used as method for muscular stimulation and as an exercise intervention. Whole body vibration training (WBVT) aims to mechanically activate muscles by eliciting neuromuscular activity (muscle reflexes) via the use of vibrations delivered to the whole body. The most mentioned mechanism to explain the neuromuscular outcomes of vibration is the elicited neuromuscular activation. Local tendon vibrations induce activity of the muscle spindle Ia fibers, mediated by monosynaptic and polysynaptic pathways: a reflex muscle contraction known as the Tonic Vibration Reflex (TVR) arises in response to such vibratory stimulus. In WBVT mechanical vibrations, in a range from 10 to 80 Hz and peak to peak displacements from 1 to 10 mm, are usually transmitted to the patient body by the use of oscillating platforms. Vibrations are then transferred from the platform to a specific muscle group through the subject body. To customize WBV treatments, surface electromyography (SEMG) signals are often used to reveal the best stimulation frequency for each subject. Use of SEMG concise parameters, such as root mean square values of the recordings, is also a common practice; frequently a preliminary session can take place in order to discover the more appropriate stimulation frequency. Soft tissues act as wobbling masses vibrating in a damped manner in response to mechanical excitation; Muscle Tuning hypothesis suggest that neuromuscular system works to damp the soft tissue oscillation that occurs in response to vibrations; muscles alters their activity to dampen the vibrations, preventing any resonance phenomenon. Muscle response to vibration is however a complex phenomenon as it depends on different parameters, like muscle-tension, muscle or segment-stiffness, amplitude and frequency of the mechanical vibration. Additionally, while in the TVR study the applied vibratory stimulus and the muscle conditions are completely characterised (a known vibration source is applied directly to a stretched/shortened muscle or tendon), in WBV study only the stimulus applied to a distal part of the body is known. Moreover, mechanical response changes in relation to the posture. The transmissibility of vibratory stimulus along the body segment strongly depends on the position held by the subject. The aim of this work was the investigation on the effects that the use of vibrations, in particular the effects of whole body vibrations, may have on muscular activity. A new approach to discover the more appropriate stimulus frequency, by the use of accelerometers, was also explored. Different subjects, not affected by any known neurological or musculoskeletal disorders, were voluntarily involved in the study and gave their informed, written consent to participate. The device used to deliver vibration to the subjects was a vibrating platform. Vibrations impressed by the platform were exclusively vertical; platform displacement was sinusoidal with an intensity (peak-to-peak displacement) set to 1.2 mm and with a frequency ranging from 10 to 80 Hz. All the subjects familiarized with the device and the proper positioning. Two different posture were explored in this study: position 1 - hack squat; position 2 - subject standing on toes with heels raised. SEMG signals from the Rectus Femoris (RF), Vastus Lateralis (VL) and Vastus medialis (VM) were recorded. SEMG signals were amplified using a multi-channel, isolated biomedical signal amplifier The gain was set to 1000 V/V and a band pass filter (-3dB frequency 10 - 500 Hz) was applied; no notch filters were used to suppress line interference. Tiny and lightweight (less than 10 g) three-axial MEMS accelerometers (Freescale semiconductors) were used to measure accelerations of onto patient’s skin, at EMG electrodes level. Accelerations signals provided information related to individuals’ RF, Biceps Femoris (BF) and Gastrocnemius Lateralis (GL) muscle belly oscillation; they were pre-processed in order to exclude influence of gravity. As demonstrated by our results, vibrations generate peculiar, not negligible motion artifact on skin electrodes. Artifact amplitude is generally unpredictable; it appeared in all the quadriceps muscles analysed, but in different amounts. Artifact harmonics extend throughout the EMG spectrum, making classic high-pass filters ineffective; however, their contribution was easy to filter out from the raw EMG signal with a series of sharp notch filters centred at the vibration frequency and its superior harmonics (1.5 Hz wide). However, use of these simple filters prevents the revelation of EMG power potential variation in the mentioned filtered bands. Moreover our experience suggests that the possibility of reducing motion artefact, by using particular electrodes and by accurately preparing the subject’s skin, is not easily viable; even though some small improvements were obtained, it was not possible to substantially decrease the artifact. Anyway, getting rid of those artifacts lead to some true EMG signal loss. Nevertheless, our preliminary results suggest that the use of notch filters at vibration frequency and its harmonics is suitable for motion artifacts filtering. In RF SEMG recordings during vibratory stimulation only a little EMG power increment should be contained in the mentioned filtered bands due to synchronous electromyographic activity of the muscle. Moreover, it is better to remove the artifact that, in our experience, was found to be more than 40% of the total signal power. In summary, many variables have to be taken into account: in addition to amplitude, frequency and duration of vibration treatment, other fundamental variables were found to be subject anatomy, individual physiological condition and subject’s positioning on the platform. Studies on WBV treatments that include surface EMG analysis to asses muscular activity during vibratory stimulation should take into account the presence of motion artifacts. Appropriate filtering of artifacts, to reveal the actual effect on muscle contraction elicited by vibration stimulus, is mandatory. However as a result of our preliminary study, a simple multi-band notch filtering may help to reduce randomness of the results. Muscle tuning hypothesis seemed to be confirmed. Our results suggested that the effects of WBV are linked to the actual muscle motion (displacement). The greater was the muscle belly displacement the higher was found the muscle activity. The maximum muscle activity has been found in correspondence with the local mechanical resonance, suggesting a more effective stimulation at the specific system resonance frequency. Holding the hypothesis that muscle activation is proportional to muscle displacement, treatment optimization could be obtained by simply monitoring local acceleration (resonance). However, our study revealed some short term effects of vibratory stimulus; prolonged studies should be assembled in order to consider the long term effectiveness of these results. Since local stimulus depends on the kinematic chain involved, WBV muscle stimulation has to take into account the transmissibility of the stimulus along the body segment in order to ensure that vibratory stimulation effectively reaches the target muscle. Combination of local resonance and muscle response should also be further investigated to prevent hazards to individuals undergoing WBV treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Building energy meter network, based on per-appliance monitoring system, willbe an important part of the Advanced Metering Infrastructure. Two key issues exist for designing such networks. One is the network structure to be used. The other is the implementation of the network structure on a large amount of small low power devices, and the maintenance of high quality communication when the devices have electric connection with high voltage AC line. The recent advancement of low-power wireless communication makes itself the right candidate for house and building energy network. Among all kinds of wireless solutions, the low speed but highly reliable 802.15.4 radio has been chosen in this design. While many network-layer solutions have been provided on top of 802.15.4, an IPv6 based method is used in this design. 6LOWPAN is the particular protocol which adapts IP on low power personal network radio. In order to extend the network into building area without, a specific network layer routing mechanism-RPL, is included in this design. The fundamental unit of the building energy monitoring system is a smart wall plug. It is consisted of an electricity energy meter, a RF communication module and a low power CPU. The real challenge for designing such a device is its network firmware. In this design, IPv6 is implemented through Contiki operation system. Customize hardware driver and meter application program have been developed on top of the Contiki OS. Some experiments have been done, in order to prove the network ability of this system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The cost-effectiveness of routine viral load (VL) monitoring of HIV-infected patients on antiretroviral therapy (ART) depends on various factors that differ between settings and across time. Low-cost point-of-care (POC) tests for VL are in development and may make routine VL monitoring affordable in resource-limited settings. We developed a software tool to study the cost-effectiveness of switching to second-line ART with different monitoring strategies, and focused on POC-VL monitoring. METHODS We used a mathematical model to simulate cohorts of patients from start of ART until death. We modeled 13 strategies (no 2nd-line, clinical, CD4 (with or without targeted VL), POC-VL, and laboratory-based VL monitoring, with different frequencies). We included a scenario with identical failure rates across strategies, and one in which routine VL monitoring reduces the risk of failure. We compared lifetime costs and averted disability-adjusted life-years (DALYs). We calculated incremental cost-effectiveness ratios (ICER). We developed an Excel tool to update the results of the model for varying unit costs and cohort characteristics, and conducted several sensitivity analyses varying the input costs. RESULTS Introducing 2nd-line ART had an ICER of US$1651-1766/DALY averted. Compared with clinical monitoring, the ICER of CD4 monitoring was US$1896-US$5488/DALY averted and VL monitoring US$951-US$5813/DALY averted. We found no difference between POC- and laboratory-based VL monitoring, except for the highest measurement frequency (every 6 months), where laboratory-based testing was more effective. Targeted VL monitoring was on the cost-effectiveness frontier only if the difference between 1st- and 2nd-line costs remained large, and if we assumed that routine VL monitoring does not prevent failure. CONCLUSION Compared with the less expensive strategies, the cost-effectiveness of routine VL monitoring essentially depends on the cost of 2nd-line ART. Our Excel tool is useful for determining optimal monitoring strategies for specific settings, with specific sex-and age-distributions and unit costs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND AIMS The structured IBD Ahead 'Optimised Monitoring' programme was designed to obtain the opinion, insight and advice of gastroenterologists on optimising the monitoring of Crohn's disease activity in four settings: (1) assessment at diagnosis, (2) monitoring in symptomatic patients, (3) monitoring in asymptomatic patients, and (4) the postoperative follow-up. For each of these settings, four monitoring methods were discussed: (a) symptom assessment, (b) endoscopy, (c) laboratory markers, and (d) imaging. Based on literature search and expert opinion compiled during an international consensus meeting, recommendations were given to answer the question 'which diagnostic method, when, and how often'. The International IBD Ahead Expert Panel advised to tailor this guidance to the healthcare system and the special prerequisites of each country. The IBD Ahead Swiss National Steering Committee proposes best-practice recommendations adapted for Switzerland. METHODS The IBD Ahead Steering Committee identified key questions and provided the Swiss Expert Panel with a structured literature research. The expert panel agreed on a set of statements. During an international expert meeting the consolidated outcome of the national meetings was merged into final statements agreed by the participating International and National Steering Committee members - the IBD Ahead 'Optimized Monitoring' Consensus. RESULTS A systematic assessment of symptoms, endoscopy findings, and laboratory markers with special emphasis on faecal calprotectin is deemed necessary even in symptom-free patients. The choice of recommended imaging methods is adapted to the specific situation in Switzerland and highlights the importance of ultrasonography and magnetic resonance imaging besides endoscopy. CONCLUSION The recommendations stress the importance of monitoring disease activity on a regular basis and by objective parameters, such as faecal calprotectin and endoscopy with detailed documentation of findings. Physicians should not rely on symptoms only and adapt the monitoring schedule and choice of options to individual situations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Permanently bonded onto a structure, an integrated Phased Array (PhA II) transducer that can provide reliable electromechanical connection with corresponding sophisticated miniaturized ?all in one? SHM electronic device installed directly above it, without need for any interface cabling, during all aerospace structure lifecycle phases and for a huge variety of real harsh service environments of structures to be monitored is presented. This integrated PhA II transducer [1], as a key component of the PAMELA SHM? (Phased Array Monitoring for Enhanced Life Assessment) system, has two principal tasks at the same time, reliably transceive elastic waves in real aerospace service environments and serves as a reliable sole carrier or support for associated integrated on-board SHM electronic device attached above. The PhA II transducer successfully accomplished both required task throughout extensive test campaigns which included low to high temperature tests, temperature cycling, mechanical loading, combined thermo- mechanical loading and vibration resistance, etc. both with and without SHM device attached above due to RTCA DO-160F.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tool wear detection is a key issue for tool condition monitoring. The maximization of useful tool life is frequently related with the optimization of machining processes. This paper presents two model-based approaches for tool wear monitoring on the basis of neuro-fuzzy techniques. The use of a neuro-fuzzy hybridization to design a tool wear monitoring system is aiming at exploiting the synergy of neural networks and fuzzy logic, by combining human reasoning with learning and connectionist structure. The turning process that is a well-known machining process is selected for this case study. A four-input (i.e., time, cutting forces, vibrations and acoustic emissions signals) single-output (tool wear rate) model is designed and implemented on the basis of three neuro-fuzzy approaches (inductive, transductive and evolving neuro-fuzzy systems). The tool wear model is then used for monitoring the turning process. The comparative study demonstrates that the transductive neuro-fuzzy model provides better error-based performance indices for detecting tool wear than the inductive neuro-fuzzy model and than the evolving neuro-fuzzy model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contact Spatially Resolved Spectroscopy (SRS) measurements by means of a fiber-optics probe were employed for nondestructive assessment and monitoring of Braeburn apples during shelflife storage. SRS measurements and estimation of optical properties were calibrated and validated by means of liquid optical phantoms with known optical properties and a metamodeling method. The acquired optical properties (absorption and reduced scattering coefficients) for the apples during shelf-life storage were found to provide useful information for nondestructive evaluation of apple quality attributes (firmness and SSC) and for monitoring the changes in their microstructure and chemical composition. On-line SRS measurement was achieved by mounting the SRS probe over a conveyor system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, the increasing sophistication of embedded multimedia systems and wireless communication technologies has promoted a widespread utilization of video streaming applications. It has been reported in 2013 that youngsters, aged between 13 and 24, spend around 16.7 hours a week watching online video through social media, business websites, and video streaming sites. Video applications have already been blended into people daily life. Traditionally, video streaming research has focused on performance improvement, namely throughput increase and response time reduction. However, most mobile devices are battery-powered, a technology that grows at a much slower pace than either multimedia or hardware developments. Since battery developments cannot satisfy expanding power demand of mobile devices, research interests on video applications technology has attracted more attention to achieve energy-efficient designs. How to efficiently use the limited battery energy budget becomes a major research challenge. In addition, next generation video standards impel to diversification and personalization. Therefore, it is desirable to have mechanisms to implement energy optimizations with greater flexibility and scalability. In this context, the main goal of this dissertation is to find an energy management and optimization mechanism to reduce the energy consumption of video decoders based on the idea of functional-oriented reconfiguration. System battery life is prolonged as the result of a trade-off between energy consumption and video quality. Functional-oriented reconfiguration takes advantage of the similarities among standards to build video decoders reconnecting existing functional units. If a feedback channel from the decoder to the encoder is available, the former can signal the latter changes in either the encoding parameters or the encoding algorithms for energy-saving adaption. The proposed energy optimization and management mechanism is carried out at the decoder end. This mechanism consists of an energy-aware manager, implemented as an additional block of the reconfiguration engine, an energy estimator, integrated into the decoder, and, if available, a feedback channel connected to the encoder end. The energy-aware manager checks the battery level, selects the new decoder description and signals to build a new decoder to the reconfiguration engine. It is worth noting that the analysis of the energy consumption is fundamental for the success of the energy management and optimization mechanism. In this thesis, an energy estimation method driven by platform event monitoring is proposed. In addition, an event filter is suggested to automate the selection of the most appropriate events that affect the energy consumption. At last, a detailed study on the influence of the training data on the model accuracy is presented. The modeling methodology of the energy estimator has been evaluated on different underlying platforms, single-core and multi-core, with different characteristics of workload. All the results show a good accuracy and low on-line computation overhead. The required modifications on the reconfiguration engine to implement the energy-aware manager have been assessed under different scenarios. The results indicate a possibility to lengthen the battery lifetime of the system in two different use-cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En esta tesis se desarrolla una investigación sobre las técnicas de medida de descargas parciales (DP) que se aplican en medidas on-line, en condiciones normales de operación de las instalaciones eléctricas de alta tensión (AT). También se realiza un estudio de técnicas avanzadas de procesado y análisis de las señales medidas, que permiten realizar diagnósticos precisos del estado de los aislamientos eléctricos de AT. Uno de los objetivos fundamentales de la tesis ha sido disponer de un procedimiento eficaz de medida y procesado de las señales de DP, para la realización de medidas on-line tanto de forma itinerante, como mediante monitorización temporal o permanente. La implementación del nuevo procedimiento de medida permite obtener resultados satisfactorios en la detección, identificación y localización de defectos de aislamiento. Se ha dedicado especial interés al desarrollo de un método de clasificación de señales, que permite separar pulsos de ruido y diferentes fuentes de DP, presentes de forma simultánea en las instalaciones de AT. El estudio de la clasificación de señales se ha completado con la aplicación de un método para la detección de manera asistida, de los diferentes grupos de pulsos de ruido y de DP. La aplicación de este método de detección de grupos de pulsos, facilita la labor de los técnicos especialistas a la hora de diagnosticar el estado de los elementos aislantes. Al efecto de verificar de forma práctica las aportaciones de la tesis, se han realizado medidas de DP tanto en laboratorio como en campo. Las medidas experimentales en laboratorio se han efectuado en el Laboratorio de Alta Tensión de la Escuela Técnica Superior de Ingeniería y Diseño Industrial (LAT-UPM), de la Universidad Politécnica de Madrid. Por otro lado, las medidas experimentales en campo se han llevado a cabo en instalaciones de AT propiedad de compañías de transporte y distribución de energía eléctrica. La realización de ensayos de DP en estas instalaciones ha sido posible, gracias a los proyectos de investigación llevados a cabo por el grupo de trabajo del LAT-UPM, con diferentes empresas del sector durante los diez últimos años. ABSTRACT This thesis develops techniques for measuring partial discharges (PD) that are applied in on-line measurements, under normal operating conditions of the high voltage (HV) electrical installations. In addition there are studied advanced techniques for the processing and analysis of the measured signals, that permit precise diagnostics of the state of HV electrical insulation systems. One of the fundamental objectives of the thesis is to make available an effective procedure for measuring and processing PD signals, for making on-line measurements, either in an itinerant way or in temporary or permanent monitoring. The implementation of the new measurement procedure yields satisfactory results in the detection, identification and localization of insulation defects. Special attention has been devoted to the development of a method for classifying signals, that separates noise pulses and various PD sources present simultaneously in the HV installations. The study of the classification of signals has been completed by the application of a method for detecting, in a user assisted manner, the different groups of noise pulses and of PD. The application of this method for detecting groups of pulses facilitates the work of the specialist technicians to diagnose the condition of the insulation elements. To demonstrate the practical value of the thesis, PD measurements were made in laboratory as well as in field installations. The experimental measurements in laboratory were made in the High Voltage Laboratory (LAT-UPM) of the High Technical School of Engineering and Industrial Design, of the Polytechnic University of Madrid. Field measurements were realized in the HV installations of companies providing electrical energy transport and distribution. The realization of PD tests in these facilities was possible thanks to the research projects carried out by the working group of the LAT-UPM during the last ten years, with different companies operating in the sector.