940 resultados para offshore
Resumo:
We detected authigenic clinoptilolites in two core samples of tuffaceous, siliceous mudstone in the lower Miocene section of Hole 439. They occur as prismatic and tabular crystals as long as 0.03 mm in various voids of dissolved glass shards, radiolarian shells, calcareous foraminifers, and calcareous algae. They are high in alkalies, especially Na, and in silica varieties. There is a slight difference in composition among them. The Si : (Al+ Fe3+) ratio is highest (4.65) in radiolarian voids, intermediate (4.34) in dissolved glass voids, and lowest (4.26) in voids of calcareous organisms. This difference corresponds to the association of authigenic silica minerals revealed by the scanning electron microscope: There are abundant opal-CT lepispheres in radiolarian voids, low cristobalite and some lepispheres in dissolved glass voids, and a lack of silica minerals in the voids of calcareous organisms. Although it contains some silica from biogenic opal and alkalies from trapped sea water, clinoptilolite derives principally from dissolved glass. Although they are scattered in core samples of Quaternary through lower Miocene diatomaceous and siliceous deposits, acidic glass fragments react with interstitial water to form clinoptilolite only at a sub-bottom depth of 935 meters at approximately 25°C. Analcimes occur in sand-sized clasts of altered acidic vitric tuff in the uppermost Oligocene sandstones. The analcimic tuff clasts were probably reworked from the Upper Cretaceous terrain adjacent to Site 439. Low cristobalite and opal-CT are found in tuffaceous, siliceous mudstone of the middle and lower Miocene sections at Sites 438 and 439. Low cristobalite derives from acidic volcanic glass and opal-CT from biogenic silica. Both siliceous organic remains and acidic glass fragments occur in sediments from the Quaternary through lower Miocene sections. However, the shallowest occurrence is at 700 meters subbottom in Hole 438A, where temperature is estimated to be 21°C. The d(101) spacing of opal-CT varies from 4.09 to 4.11 Å and that of low cristobalite from 4.04 to 4.06 Å. Some opal-CT lepispheres are precipitated onto clinoptilolites in the voids of radiolarian shells at a sub-bottom depth of 950 meters in Hole 439. Sandstone interlaminated with Upper Cretaceous shale is chlorite- calcite cemented and feldspathic. Sandstones in the uppermost Oligocene section are lithic graywacke and consist of large amounts of lithic clasts grouped into older sedimentary and weakly metamorphosed rocks, younger sedimentary rocks, and acidic volcanic rocks. The acidic volcanic clasts probably originated from the volcanic high, which supplied the basal conglomerate with dacite gravels. The older sedimentary and weakly metamorphosed rocks and green rock correspond to the lithologies of the lower Mesozoic to upper Paleozoic Sorachi Group, including the chert, limestone, and slate in south-central Hokkaido. However, the angular shape and coarseness of the clasts and the abundance of carbonate rock fragments indicate a nearby provenance, which is probably the southern offshore extension of the Sorachi Group. The younger sedimentary rocks, including mudstone, carbonaceous shale, and analcime-bearing tuff, correspond to the lithologies of the Upper Cretaceous strata in south-central Hokkaido. Their clasts were reworked from the southern offshore extension of the strata. Because of the discontinuity of the zeolite zoning due to burial diagenesis, an overburden several kilometers thick must have been denuded before the deposition of sediments in the early Oligocene.
Resumo:
During Deep Sea Drilling Project (DSDP) Leg 84 a core 1 m long and 6 cm in diameter of massive gas hydrate was unexpectedly recovered at Site 570 in upper slope sediment of the Middle America Trench offshore of Guatemala. This core contained only 5-7% sediment, the remainder being the solid hydrate composed of gas and water. Samples of the gas hydrate were decomposed under controlled conditions in a closed container maintained at 4°C. Gas pressure increased and asymptotically approached the equilibrium decomposition pressure for an ideal methane hydrate, CH4.5-3/4H2O, of 3930 kPa and approached to this pressure after each time gas was released, until the gas hydrate was completely decomposed. The gas evolved during hydrate decomposition was 99.4% methane, ~0.2% ethane, and ~0.4% CO2. Hydrocarbons from propane to heptane were also present, but in concentrations of less than 100 p.p.m. The carbon-isotopic composition of methane was -41 to -44 per mil, relative to PDB standard. The observed volumetric methane/water ratio was 64 or 67, which indicates that before it was stored and analyzed, the gas hydrate probably had lost methane. The sample material used in the experiments was likely a mixture of methane hydrate and water ice. Formation of this massive gas hydrate probably involved the following processes: (i) upward migration of gas and its accumulation in a zone where conditions favored the growth of gas hydrates, (ii) continued, unusually rapid biological generation of methane, and (iii) release of gas from water solution as pressure decreased due to sea level lowering and tectonic uplift.
Resumo:
The chemistry of snow and ice cores from Svalbard is influenced by variations in local sea ice margin and distance to open water. Snow pits sampled at two summits of Vestfonna ice cap (Nordaustlandet, Svalbard), exhibit spatially heterogeneous soluble ions concentrations despite similar accumulation rates, reflecting the importance of small-scale weather patterns on this island ice cap. The snow pack on the western summit shows higher average values of marine ions and a winter snow layer that is relatively depleted in sulphate. One part of the winter snow pack exhibits a [SO4-/Na+] ratio reduced by two thirds compared with its ratio in sea water. This low sulphate content in winter snow is interpreted as the signature of frost flowers, which are formed on young sea ice when offshore winds predominate. Frost flowers have been described as the dominant source of sea salt to aerosol and precipitation in ice cores in coastal Antarctica but this is the first time their chemical signal has been described in the Arctic. The eastern summit does not show any frost flower signature and we interpret the unusually dynamic ice transport and rapid formation of thin ice on the Hinlopen Strait as the source of the frost flowers.
Resumo:
We determined the numbers of free-living and associated (aggregated or bonded with particles) bacteria in the coastal water of King George Island at an offshore (St. 1) and a nearshore station (St. 2) as a function of physico-chemical parameters. Water sampIes were collected between March and October at St. 1 and between April and October at St. 2. Direct counts of total bacteria varied from 0.53*10**8 to 5.02*10**8 cells/l. Associated microorganisms accounted for 5 to 20 % of the total number of bacteria. Strong Spearman and Pearson correlations were observed (R = 0.82; P = 0.001) between the numbers of free-living and associated bacteria at St. 1. These two groups of bacteria were nearly evenly distributed in the horizontal transects from inshore to offshore waters at depths of 1-10 m in Ardley Cove. There were no substantial differences in the numbers of either free-living or associated bacteria in vertical transects too. Their number at St. 1, but not at St. 2, correlated significantly with all tested environmental parameters (salinity, temperature, solar radiation, nitrate, phosphate and chlorophyll a concentrations), except nitrite concentrations in water. The most probable reason for these correlations is that a common seasonal trend is characteristic of most tested parameters during the March to October period.
Resumo:
A large population of the colonial pelagic tunicate Pyrosoma atlanticum occurred in April 1991 in offshore waters of the Ligurian Sea (Northwestern Mediterranean). The high numbers of colonies caught allowed their vertical distribution and diel migration in the 0-965 m water column to be described as a function of their size. Daytime depths and amplitudes of the migration were correlated with colony size. The amplitude of the migration ranged from 90 m for 3-mm-length colonies to 760 m for 51-mm-length colonies, with a mean amplitude of 410 m for the whole population, all sizes pooled. The results of horizontal hauls at a given depth around sunrise and sunset showed a marked diurnal symmetry of the migratory cycle relative to noon, and that migration of the population was not cohesive. For example, the larger the colonies, the later after sunset they reached the upper layers during their upward migration.
Resumo:
Significant changes in terrestrial and marine environments of Baffin Bay occurred throughout the late Pliocene to Holocene. Upper Pliocene and lowermost Pleistocene sediments contain abundant pollen and spores, which indicates the existence of open, coniferous, boreal forest to forest tundra in areas surrounding Baffin Bay. The late Pliocene-earliest Pleistocene also is characterized by relatively rich, dinoflagellate cyst and acritarch assemblages of boreal character, in which the dominance of Cymatiosphaera and Peridiniaceae may indicate neritic influx of sediments. In contrast, the late-early Pleistocene to Holocene interval is marked by a sparse terrestrial and marine palynoflora, with rare productive intervals. The general paucity of the Pleistocene palynoflora suggests low primary productivity, both on land and offshore, probably caused by cold, dry, high arctic conditions.
Resumo:
The Golfe d'Arguin offshore of northern Mauritania hosts a rare modern analogue for heterozoan carbonate production in a tropical marine setting. Dominated by ocean upwelling and with additional fertilisation by iron-rich aeolian dust, this naturally eutrophic marine environment lacks typical photozoan communities. A highly productive, tropical cosmopolitan biota dominated by molluscs and suspension-feeders such as bryozoans and balanids characterises the carbonate-rich surface sediments. Overall biodiversity is relatively low and the species present are tolerant against the eutrophic and low-light conditions, the strong hydrodynamic regime governed by ocean upwelling, and the unstable, soft-bottom seafloor with few hard substrata. Here, we describe an ectosymbiosis between the hermit crab Pseudopagurus granulimanus (Miers, 1881) and monospecific assemblages of the encrusting cheilostome bryozoan Acanthodesia commensale (Kirkpatrick and Metzelaar, 1922) that cohabits vacant gastropod shells. Nucleating on an empty gastropod shell, the bryozoan colonies form multilamellar skeletal crusts that produce spherical encrustations and extend the living chamber of the hermit crab through helicospiral tubular growth. This non-obligate mutualistic symbiosis illustrates the adaptive capabilities and benefits from a close partnership in a complex marine environment, driven by trophic conditions, high water energies and instable substratum. Sectioned bryoliths show that between 49 and 97 % of the solid volume of the specimens consists of bryozoan skeleton.
Resumo:
Pockmarks are seafloor depressions commonly associated with fluid escape from the seabed and are believed to contribute noticeably to the transfer of methane into the ocean and ultimately into the atmosphere. They occur in many different areas and geological contexts, and vary greatly in size and shape. Nevertheless, the mechanisms of pockmark growth are still largely unclear. Still, seabed methane emissions contribute to the global carbon budget, and understanding such processes is critical to constrain future quantifications of seabed methane release at local and global scales. The giant Regab pockmark (9°42.6' E, 5°47.8' S), located at 3160 m water depth near the Congo deep-sea channel (offshore southwestern Africa), was investigated with state-of-the-art mapping devices mounted on IFREMER's (French Research Institute for Exploitation of the Sea) remotely operated vehicle (ROV) Victor 6000. ROV-borne micro-bathymetry and backscatter data of the entire structure, a high-resolution photo-mosaic covering 105,000 m2 of the most active area, sidescan mapping of gas emissions, and maps of faunal distribution as well as of carbonate crust occurrence are combined to provide an unprecedented detailed view of a giant pockmark. All data sets suggest that the pockmark is composed of two very distinctive zones in terms of seepage intensity. We postulate that these zones are the surface expression of two fluid flow regimes in the subsurface: focused flow through a fractured medium and diffuse flow through a porous medium. We conclude that the growth of giant pockmarks is controlled by self-sealing processes and lateral spreading of rising fluids. In particular, partial redirection of fluids through fractures in the sediments can drive the pockmark growth in preferential directions.
Resumo:
Angola Basin and Cape Basin (southeast Atlantic) surface sediments and sediment cores show that maxima in the abundance of taraxerol (relative to other land-derived lipids) covary with maxima in the relative abundance of pollen from the mangrove tree genus Rhizophora and that in the surface sediments offshore maxima in the relative abundance of taraxerol occur at latitudes with abundant coastal mangrove forests. Together with the observation that Rhizophora mangle and Rhizophora racemosa leaves are extraordinarily rich in taraxerol, this strongly indicates that taraxerol can be used as a lipid biomarker for mangrove input to the SE Atlantic. The proxy-environment relations for taraxerol and Rhizophora pollen down-core show that increased taraxerol and Rhizophora pollen abundances occur during transgressions and periods with a humid climate. These environmental changes modify the coastal erosion and sedimentation patterns, enhancing the extent of the mangrove ecosystem and/or the transport of mangrove organic matter offshore. Analyses of mid-Pleistocene sediments show that interruption of the pattern of taraxerol maxima during precession minima occurs almost only during periods of low obliquity. This demonstrates the complex environmental response of the interaction between precession-related humidity cycles and obliquity-related sea-level changes on mangrove input.
Resumo:
Primary production in water column (P_p) varied from 107 to 312 mg C/m**2/day in Yenisey Bay: from 25 to 63 mg C/m**2/day in Obskaya Guba: and from 20 to 359 mg C/m**2/day in the open sea, that is: in the western Kara Sea and Ob-Yenisey shoals. The average concentration of chlorophyll a in the photosynthesis layer (C_ph) ranged from 0.2 to 1.8 mg/m**3 in these two regions, lower than in the estuaries of Ob (1.6-21.7 mg/m**3) and Yenisey (2.0-5.2 mg/m**3) Rivers. An inverse relation between surface salinity (S) and chlorophyll concentration (C_s) and chlorophyll concentration in the photosynthesis layer was found for all of the regions. The highest values of C_s and C_ph (0.8-22 mg/m**3) were measured at S<10 ppt, and the lowest values (0.2-0.8 mg/m**3) at S>22 ppt. A similar correlation of S with values of Pp occurred only in the Yenisey Bay and offshore regions. Obtained results agree well with the "outwelling" hypothesis. It states that large part of organic matter produced in estuaries is not used in estuarine trophic chains but is transported into adjacent sea areas and increases their productivity. Low values of Pp in the study regions may be attributed to such unfavorable factors as deficiency in nutrients, low temperature and turbidity, and lack of solar radiation.
Resumo:
Fifteen Iberian margin sediment cores, distributed between 43°12'N and 35°53'N, have been used to reconstruct spatial and temporal (sub)surface circulation along the Iberian margin since the Last Glacial period. Time-slice maps of planktonic foraminiferal derived summer sea surface temperature (SST) and export productivity (Pexp) were established for specific time intervals within the last 35 ky: the Holocene (Recent and last 8 ky), Younger Dryas (YD), Heinrich Stadials (HS) 1, 2a, 2b, 3, and the Last Glacial Maximum (LGM). The SST during the Holocene shows the same latitudinal gradient along the western Iberian margin as present-day with cold but productive areas that reflect the influence of coastal upwelling centers. The LGM appears as a slightly less warm, but more productive period relative to the Holocene and present-day conditions, suggesting that sea-level minima forced a westward displacement of the coastal upwelling centers possibly accompanied by a strengthening of northward winds. During the YD, a longitudinal thermal front is depicted at 10°W, with cold polar waters offshore and warmer subtropical waters inshore, suggesting that the subtropical Paleo-Iberian Poleward Current more likely flowed at a more inshore location masking the local SST signal and amplitude of variation. A substantial cooling and drop in productivity is observed during all HS, in particular HS1 and HS3, reflecting the penetration of icebergs-derived meltwater. These most extreme southward extensions of very cold waters define a strong SST gradient that marks a possible Paleo-Azores Front. Higher production south of this front was likely fed by frontal nutrient advection.
Resumo:
West Antarctic ice shelves have thinned dramatically over recent decades. Oceanographic measurements that explore connections between offshore warming and transport across a continental shelf with variable bathymetry toward ice shelves are needed to constrain future changes in melt rates. Six years of seal-acquired observations provide extensive hydrographic coverage in the Bellingshausen Sea, where ship-based measurements are scarce. Warm but modified Circumpolar Deep Water floods the shelf and establishes a cyclonic circulation within the Belgica Trough with flow extending toward the coast along the eastern boundaries and returning to the shelf break along western boundaries. These boundary currents are the primary water mass pathways that carry heat toward the coast and advect ice shelf meltwater offshore. The modified Circumpolar Deep Water and meltwater mixtures shoal and thin as they approach the continental slope before flowing westward at the shelf break, suggesting the presence of the Antarctic Slope Current. Constraining meltwater pathways is a key step in monitoring the stability of the West Antarctic Ice Sheet.
Resumo:
Photophysiological processes as well as uptake characteristics of iron and inorganic carbon were studied in inshore phytoplankton assemblages of the Western Antarctic Peninsula (WAP) and offshore assemblages of the Drake Passage. Chlorophyll a concentrations and primary productivity decreased from in- to offshore waters. The inverse relationship between low maximum quantum yields of photochemistry in PSII (Fv/Fm) and large sizes of functional absorption cross sections (sigma PSII) in offshore communities indicated iron-limitation. Congruently, the negative correlation between Fv/Fm values and iron uptake rates across our sampling locations suggest an overall better iron uptake capacity in iron-limited pelagic phytoplankton communities. Highest iron uptake capacities could be related to relative abundances of the haptophyte Phaeocystis antarctica. As chlorophyll a-specific concentrations of humic-like substances were similarly high in offshore and inshore stations, we suggest humic-like substances may play an important role in iron chemistry in both coastal and pelagic phytoplankton assemblages. Regarding inorganic carbon uptake kinetics, the measured maximum short-term uptake rates (Vmax(CO2)) and apparent half-saturation constants (K1/2(CO2)) did not differ between offshore and inshore phytoplankton. Moreover, Vmax(CO2) and K1/2(CO2) did not exhibit any CO2-dependent trend over the natural pCO2 range from 237 to 507 µatm. K1/2(CO2) strongly varied among the sampled phytoplankton communities, ranging between 3.5 and 35.3 µmol/L CO2. While in many of the sampled phytoplankton communities, the operation of carbon-concentrating mechanisms (CCMs) was indicated by low K1/2(CO2) values relative to ambient CO2 concentrations, some coastal sites exhibited higher values, suggesting down-regulated CCMs. Overall, our results demonstrate a complex interplay between photophysiological processes, iron and carbon uptake of phytoplankton communities of the WAP and the Drake Passage.
Resumo:
Detailed palynological studies in the northeast (NE) Pacific, Strait of Georgia (BC, Canada), southeast (SE) Pacific and northwest Pacific (Dongdo Bay, South Korea) resulted in the recognition of the new dinoflagellate cyst species Selenopemphix undulata sp. nov. This species is restricted to cool temperate to sub-polar climate zones, where it is found in highest relative abundances in highly productive non- to reduced upwelling regions with an annual mean sea-surface temperature (aSST) below 16 °C and an annual mean sea-surface salinity (aSSS) between 20 and 35 psu. Those observations are in agreement with the late Quaternary fossil records from Santa Barbara Basin (ODP 893; 34°N) and offshore Chile (ODP 1233; 41°S), where this species thrived during the last glacial. This period was characterised by high nutrient availability and the absence of species favouring upwelling conditions. The indirect dependence of S. undulata sp. nov. abundances on nutrient availability during reduced or non-upwelling periods is expressed by the synchronous fluctuations with diatom abundances, since the distribution and growth rates of the latter are directly related with the availability of macronutrients in the surface waters.
Resumo:
We present differential bathymetry and sediment core data from the Japan Trench, sampled after the 2011 Tohoku-Oki (offshore Japan) earthquake to document that prominent bathymetric and structural changes along the trench axis relate to a large (~27.7 km**2) slump in the trench. Transient geochemical signals in the slump deposit and analysis of diffusive re-equilibration of disturbed SO4**2- profiles over time constrain the triggering of the slump to the 2011 earthquake. We propose a causal link between earthquake slip to the trench and rotational slumping above a subducting horst structure. We conclude that the earthquake-triggered slump is a leading agent for accretion of trench sediments into the forearc and hypothesize that forward growth of the prism and seaward advance of the deformation front by more than 2 km can occur, episodically, during a single-event, large mega-thrust earthquake.