1000 resultados para obtainment construction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vision-based object detection has been introduced in construction for recognizing and locating construction entities in on-site camera views. It can provide spatial locations of a large number of entities, which is beneficial in large-scale, congested construction sites. However, even a few false detections prevent its practical applications. In resolving this issue, this paper presents a novel hybrid method for locating construction equipment that fuses the function of detection and tracking algorithms. This method detects construction equipment in the video view by taking advantage of entities' motion, shape, and color distribution. Background subtraction, Haar-like features, and eigen-images are used for motion, shape, and color information, respectively. A tracking algorithm steps in the process to make up for the false detections. False detections are identified by catching drastic changes in object size and appearance. The identified false detections are replaced with tracking results. Preliminary experiments show that the combination with tracking has the potential to enhance the detection performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This book will be of particular interest to academics, researchers, and graduate students at universities and industrial practitioners seeking to apply mobile and pervasive computing systems to improve construction industry productivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This book explores the processes for retrieval, classification, and integration of construction images in AEC/FM model based systems. The author describes a combination of techniques from the areas of image and video processing, computer vision, information retrieval, statistics and content-based image and video retrieval that have been integrated into a novel method for the retrieval of related construction site image data from components of a project model. This method has been tested on available construction site images from a variety of sources like past and current building construction and transportation projects and is able to automatically classify, store, integrate and retrieve image data files in inter-organizational systems so as to allow their usage in project management related tasks. objects. Therefore, automated methods for the integration of construction images are important for construction information management. During this research, processes for retrieval, classification, and integration of construction images in AEC/FM model based systems have been explored. Specifically, a combination of techniques from the areas of image and video processing, computer vision, information retrieval, statistics and content-based image and video retrieval have been deployed in order to develop a methodology for the retrieval of related construction site image data from components of a project model. This method has been tested on available construction site images from a variety of sources like past and current building construction and transportation projects and is able to automatically classify, store, integrate and retrieve image data files in inter-organizational systems so as to allow their usage in project management related tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Architecture, Engineering, Construction and Facilities Management (AEC/FM) industry is rapidly becoming a multidisciplinary, multinational and multi-billion dollar economy, involving large numbers of actors working concurrently at different locations and using heterogeneous software and hardware technologies. Since the beginning of the last decade, a great deal of effort has been spent within the field of construction IT in order to integrate data and information from most computer tools used to carry out engineering projects. For this purpose, a number of integration models have been developed, like web-centric systems and construction project modeling, a useful approach in representing construction projects and integrating data from various civil engineering applications. In the modern, distributed and dynamic construction environment it is important to retrieve and exchange information from different sources and in different data formats in order to improve the processes supported by these systems. Previous research demonstrated that a major hurdle in AEC/FM data integration in such systems is caused by its variety of data types and that a significant part of the data is stored in semi-structured or unstructured formats. Therefore, new integrative approaches are needed to handle non-structured data types like images and text files. This research is focused on the integration of construction site images. These images are a significant part of the construction documentation with thousands stored in site photographs logs of large scale projects. However, locating and identifying such data needed for the important decision making processes is a very hard and time-consuming task, while so far, there are no automated methods for associating them with other related objects. Therefore, automated methods for the integration of construction images are important for construction information management. During this research, processes for retrieval, classification, and integration of construction images in AEC/FM model based systems have been explored. Specifically, a combination of techniques from the areas of image and video processing, computer vision, information retrieval, statistics and content-based image and video retrieval have been deployed in order to develop a methodology for the retrieval of related construction site image data from components of a project model. This method has been tested on available construction site images from a variety of sources like past and current building construction and transportation projects and is able to automatically classify, store, integrate and retrieve image data files in inter-organizational systems so as to allow their usage in project management related tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monitoring the location of resources on large scale, congested, outdoor sites can be performed more efficiently with vision tracking, as this approach does not require any pre-tagging of resources. However, the greatest impediment to the use of vision tracking in this case is the lack of detection methods that are needed to automatically mark the resources of interest and initiate the tracking. This paper presents such a novel method for construction worker detection that localizes construction workers in video frames. The proposed method exploits motion, shape, and color cues to narrow down the detection regions to moving objects, people, and finally construction workers, respectively. The three cues are characterized by using background subtraction, the histogram of oriented gradients (HOG), and the HSV color histogram. The method has been tested on videos taken in various environments. The results demonstrate its suitability for automatic initialization of vision trackers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vision trackers have been proposed as a promising alternative for tracking at large-scale, congested construction sites. They provide the location of a large number of entities in a camera view across frames. However, vision trackers provide only two-dimensional (2D) pixel coordinates, which are not adequate for construction applications. This paper proposes and validates a method that overcomes this limitation by employing stereo cameras and converting 2D pixel coordinates to three-dimensional (3D) metric coordinates. The proposed method consists of four steps: camera calibration, camera pose estimation, 2D tracking, and triangulation. Given that the method employs fixed, calibrated stereo cameras with a long baseline, appropriate algorithms are selected for each step. Once the first two steps reveal camera system parameters, the third step determines 2D pixel coordinates of entities in subsequent frames. The 2D coordinates are triangulated on the basis of the camera system parameters to obtain 3D coordinates. The methodology presented in this paper has been implemented and tested with data collected from a construction site. The results demonstrate the suitability of this method for on-site tracking purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compared with structured data sources that are usually stored and analyzed in spreadsheets, relational databases, and single data tables, unstructured construction data sources such as text documents, site images, web pages, and project schedules have been less intensively studied due to additional challenges in data preparation, representation, and analysis. In this paper, our vision for data management and mining addressing such challenges are presented, together with related research results from previous work, as well as our recent developments of data mining on text-based, web-based, image-based, and network-based construction databases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital photographs of construction site activities are gradually replacing their traditional paper based counterparts. Existing digital imaging technologies in hardware and software make it easy for site engineers to take numerous photographs of “interesting” processes and activities on a daily basis. The resulting photographic data are evidence of the “as-built” project, and can therefore be used in a number of project life cycle tasks. However, the task of retrieving the relevant photographs needed in these tasks is often burdened by the sheer volume of photographs accumulating in project databases over time and the numerous objects present in each photograph. To solve this problem, the writers have recently developed a number of complementary techniques that can automatically classify and retrieve construction site images according to a variety of criteria (materials, time, date, location, etc.). This paper presents a novel complementary technique that can automatically identify linear (i.e., beam, column) and nonlinear (i.e., wall, slab) construction objects within the image content and use that information to enhance the performance of the writers’ existing construction site image retrieval approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compared with construction data sources that are usually stored and analyzed in spreadsheets and single data tables, data sources with more complicated structures, such as text documents, site images, web pages, and project schedules have been less intensively studied due to additional challenges in data preparation, representation, and analysis. In this paper, our definition and vision for advanced data analysis addressing such challenges are presented, together with related research results from previous work, as well as our recent developments of data analysis on text-based, image-based, web-based, and network-based construction sources. It is shown in this paper that particular data preparation, representation, and analysis operations should be identified, and integrated with careful problem investigations and scientific validation measures in order to provide general frameworks in support of information search and knowledge discovery from such information-abundant data sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The technological advancements in digital imaging, the widespread popularity of digital cameras, and the increasing demand by owners and contractors for detailed and complete site photograph logs have triggered an ever-increasing growth in the rate of construction image data collection, with thousands of images being stored for each project. However, the sheer volume of images and the difficulties in accurately and manually indexing them have generated a pressing need for methods that can index and retrieve images with minimal or no user intervention. This paper reports recent developments from research efforts in the indexing and retrieval of construction site images in architecture, engineering, construction, and facilities management image database systems. The limitations and benefits of the existing methodologies will be presented, as well as an explanation of the reasons for the development of a novel image retrieval approach that not only can recognize construction materials within the image content in order to index images, but also can be compatible with existing retrieval methods, enabling enhanced results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Images represent a valuable source of information for the construction industry. Due to technological advancements in digital imaging, the increasing use of digital cameras is leading to an ever-increasing volume of images being stored in construction image databases and thus makes it hard for engineers to retrieve useful information from them. Content-Based Search Engines are tools that utilize the rich image content and apply pattern recognition methods in order to retrieve similar images. In this paper, we illustrate several project management tasks and show how Content-Based Search Engines can facilitate automatic retrieval, and indexing of construction images in image databases.