986 resultados para nuclear spectroscopy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solvent plays a decisive role in the photochemistry and photophysics of aromatic ketones. Xanthone (XT) is one such aromatic ketone and its triplet-triplet (T-T) absorption spectra show intriguing solvatochromic behavior. Also, the reactivity of XT towards H-atom abstraction shows an unprecedented decrease in protic solvents relative to aprotic solvents. Therefore, a comprehensive solvatochromic analysis of the triplet-triplet absorption spectra of XT was carried out in conjunction with time dependent density functional theory using the ad hoc explicit solvent model approach. A detailed solvatochromic analysis of the T-T absorption bands of XT suggests that the hydrogen bonding interactions are different in the corresponding triplet excited states. Furthermore, the contributions of non-specific and hydrogen bonding interactions towards differential solvation of the triplet states in protic solvents were found to be of equal magnitude. The frontier molecular orbital and electron density difference analysis of the T-1 and T-2 states of XT indicates that the charge redistribution in these states leads to intermolecular hydrogen bond strengthening and weakening, respectively, relative to the S-0 state. This is further supported by the vertical excitation energy calculations of the XT-methanol supra-molecular complex. The intermolecular hydrogen bonding potential energy curves obtained for this complex in the S-0, T-1, and T-2 states support the model. In summary, we propose that the different hydrogen bonding mechanisms exhibited by the two lowest triplet excited states of XT result in a decreasing role of the n pi* triplet state, and are thus responsible for its reduced reactivity towards H-atom abstraction in protic solvents. (C) 2016 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characteristics of the Raman spectrum from carbon onions have been identified in terms of the position of the G peak and appearance of the transverse optic phonon peaks. Five new peaks were observed in the low wavenumber region, at about 1100, 861, 700, 450 and 250 cm(-1). The origins of these peaks are discussed in terms of the phonon density of states (PDOS) and phonon dispersion curves of graphite. The curvature of the graphene planes is invoked to explain the relaxation of the Raman selection rules and the appearance of the new peaks. The Raman spectrum of carbon onions is compared with that of highly oriented pyrolytic graphite (HOPG). The strain of graphene planes due to curvature has been estimated analytically and is used to account for the downward shift of the G peak. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macro-steatosis in deceased donor livers is increasingly prevalent and is associated with poor or non-function of the liver upon reperfusion. Current assessment of the extent of steatosis depends upon the macroscopic assessment of the liver by the surgeon and histological examination, if available. In this paper we demonstrate electrical and optical spectroscopy techniques which quantitatively characterize fatty infiltration in liver tissue. Optical spectroscopy showed a correlation coefficient of 0.85 in humans when referenced to clinical hematoxylin and eosin (H&E) sections in 20 human samples. With further development, an optical probe may provide a comprehensive measure of steatosis across the liver at the time of procurement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, we report the hydrogen content estimation of the hydrogenated amorphous carbon (a-C:H) films using visible Raman spectroscopy in a fast and nondestructive way. Hydrogenated diamondlike carbon films were deposited by the plasma enhanced chemical vapor deposition, plasma beam source, and integrated distributed electron cyclotron resonance techniques. Methane and acetylene were used as source gases resulting in different hydrogen content and sp2/sp3 fraction. Ultraviolet-visible (UV-Vis) spectroscopic ellipsometry (1.5-5 eV) as well as UV-Vis spectroscopy were provided with the optical band gap (Tauc gap). The sp2/sp3 fraction and the hydrogen content were independently estimated by electron energy loss spectroscopy and elastic recoil detection analysis-Rutherford back scattering, respectively. The Raman spectra that were acquired in the visible region using the 488 nm line shows the superposition of Raman features on a photoluminescence (PL) background. The direct relationship of the sp2 content and the optical band gap has been confirmed. The difference in the PL background for samples of the same optical band gap (sp2 content) and different hydrogen content was demonstrated and an empirical relationship between the visible Raman spectra PL background slope and the corresponding hydrogen content was extracted. © 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We measure the effects of phonon confinement on the Raman spectra of silicon nanowires. We show how previous spectra were inconsistent with phonon confinement, but were due to intense local heating caused by the laser. This is peculiar to nanostructures, and would require orders of magnitude more power in bulk Si. By working at very low laser powers, we identify the contribution of pure confinement typical of quantum wires.