925 resultados para neurogenic inflammation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colorectal cancer (CRC) is the third most common cancer in the UK with 41,000 new cases diagnosed in 2011. Despite undergoing potentially curative resection, a significant amount of patients develop recurrence. Biomarkers that aid prognostication or identify patients who are suitable for adjuvant treatments are needed. The TNM staging system does a reasonably good job at offering prognostic information to the treating clinician, but it could be better and identifying methods of improving its accuracy are needed. Tumour progression is based on a complex relationship between tumour behaviour and the hosts’ inflammatory responses. Sustained tumour cell proliferation, evading growth suppressors, resisting apoptosis, replicative immortality, sustained angiogenesis, invasion & metastasis, avoiding immune destruction, deregulated cellular energetics, tumour promoting inflammation and genomic instability & mutation have been identified as hallmarks. These hallmarks are malignant behaviors are what makes the cell cancerous and the more extreme the behaviour the more aggressive the cancer the more likely the risk of a poor outcome. There are two primary genomic instability pathways: Microsatellite Instability (MSI) and Chromosomal Instability (CI) also referred to as Microsatellite Stability (MSS). Tumours arising by these pathways have a predilection for specific anatomical, histological and molecular biological features. It is possible that aberrant molecular expression of genes/proteins that promote malignant behaviors may also act as prognostic and predictive biomarkers, which may offer superior prognostic information to classical prognostic features. Cancer related inflammation has been described as a 7th hallmark of cancer. Despite the systemic inflammatory response (SIR) being associated with more aggressive malignant disease, infiltration by immune cells, particularly CD8+ lymphocytes, at the advancing edge of the tumour have been associated with improved outcome and tumour MSI. It remains unknown if the SIR is associated with tumour MSI and this requires further study. The mechanisms by which colorectal cancer cells locally invade through the bowel remain uncertain, but connective tissue degradation by matrix metalloproteinases (MMPs) such as MMP-9 have been implicated. MMP-9 has been found in the cancer cells, stromal cells and patient circulation. Although tumoural MMP-9 has been associated with poor survival, reports are conflicting and contain relatively small sample sizes. Furthermore, the influence of high serum MMP-9 on survival remains unknown. Src family kinases (SFKs) have been implicated in many adverse cancer cell behaviors. SFKs comprise 9 family members BLK, C-SRC, FGR, FYN, HCK, LCK, LYN, YES, YRK. C-SRC has been the most investigated of all SFKs, but the role of other SFKs in cellular behaviors and their prognostic value remains largely unknown. The development of Src inhibitors, such as Dasatinib, has identified SFKs as a potential therapeutic target for patients at higher risk of poor survival. Unfortunately, clinical trials so far have not been promising but this may reflect inadequate patient selection and SFKs may act as useful prognostic and predictive biomarkers. In chapter 3, the association between cancer related inflammation, tumour MSI, clinicopathological factors and survival was tested in two independent cohorts. A training cohort consisting of n=182 patients and a validation cohort of n=677 patients. MSI tumours were associated with a raised CRP (p=0.003). Hypoalbuminaemia was independently associated with poor overall survival in TNM stage II cancer (HR 3.04 (95% CI 1.44 – 6.43);p=0.004), poor recurrence free survival in TNM stage III cancer (HR 1.86 (95% 1.03 – 3.36);p=0.040) and poor overall survival in CI colorectal cancer (HR 1.49 (95% CI 1.06 – 2.10);p=0.022). Interestingly, MSI tumours were associated with poor overall survival in TNM stage III cancer (HR 2.20 (95% CI 1.10 – 4.37);p=0.025). In chapter 4, the role of MMP-9 in colorectal cancer progression and survival was examined. MMP-9 in the tissue was assessed using IHC and serum expression quantified using ELISA. Serum MMP-9 was associated with cancer cell expression (Spearman’s Correlation Coefficient (SCC) 0.393, p<0.001)) and stromal expression (SCC 0.319, p=0.002). Serum MMP-9 was associated with poor recurrence-free (HR 3.37 (95% CI 1.20 – 9.48);p=0.021) and overall survival (HR 3.16 (95% CI 1.22 – 8.15);p=0.018), but tumour MMP-9 was not survival or MSI status. In chapter 5, the role of SFK expression and activation in colorectal cancer progression and survival was studied. On PCR analysis, although LYN, C-SRC and YES were the most highly expressed, FGR and HCK had higher expression profiles as tumours progressed. Using IHC, raised cytoplasmic FAK (tyr 861) was independently associated with poor recurrence free survival in all cancers (HR 1.48 (95% CI 1.02 – 2.16);p=0.040) and CI cancers (HR 1.50 (95% CI 1.02 – 2.21);p=0.040). However, raised cytoplasmic HCK (HR 2.04 (95% CI 1.11 – 3.76);p=0.022) was independently associated with poor recurrence-free survival in TNM stage II cancers. T84 and HT29 cell lines were used to examine the cellular effects of Dasatinib. Cell viability was assessed using WST-1 assay and apoptosis assessed using an ELISA cell death detection assay. Dasatinib increased T84 tumour cell apoptosis in a dose dependent manner and resulted in reduced expression of nuclear (p=0.008) and cytoplasmic (p=0.016) FAK (tyr 861) expression and increased nuclear FGR expression (p=0.004). The results of this thesis confirm that colorectal cancer is a complex disease that represents several subtypes of cancer based on molecular biological behaviors. This thesis concentrated on features of the disease related to inflammation in terms of genetic and molecular characterisation. MSI cancers are closely associated with systemic inflammation but despite this observation, they retain their relatively improved survival. MMP-9 is a feature of tissue remodeling during inflammation and is also associated with degradation of connective tissue, advanced T-stage and poor outcome when measured in the serum. The lack of stromal quantification due to TMA use rather than full sections makes the value of tumoural MMP-9 immunoreactivity in the prognostication and its association with MSI unknown and requires further study. Finally, SFK activation was also associated with SIR, however, only cytoplasmic HCK was independently associated with poor survival in patients with TNM stage II disease, the group of patients where identifying a novel biomarker is most needed. There is still some way to go before these biomarkers are translated into clinical practice and future work needs to focus on obtaining a reliable and robust scientific technique with validation in an adequately powered independent cohort.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Obesity is not a new disease, with roots that can be traced back to 400 BC. However, with the staggering increase in individuals that are overweight and obese since the 1980s, now over a quarter of individuals in Europe and the Americas are classed as obese. This presents a global health problem that needs to be addressed with novel therapies. It is now well accepted that obesity is a chronic, low-grade inflammatory condition that could predispose individuals to a number of comorbidities. Obesity is associated with cardiovascular diseases (CVDs) and type 2 diabetes (T2D) as part of “the metabolic syndrome,” and as first identified by Dr Vauge, central distribution of white adipose tissue (WAT) is an important risk factor in the development of these diseases. Subsequently, visceral WAT (vWAT) was shown to be an important factor in this association with CVDs and T2D, and increasing inflammation. As the obese WAT expands, mainly through hypertrophy, there is an increase in inflammation that recruits numerous immune cells to the tissue that further exacerbate this inflammation, causing local and systemic inflammatory and metabolic effects. One of the main types of immune cell involved in this pathogenic process is pro-inflammatory M1 adipose tissue macrophages (ATMs). MicroRNAs (miRNAs) are a species of small RNAs that post-transcriptionally regulate gene expression by targeting gene mRNA, causing its degradation or translational repression. These miRNAs are promiscuous, regulating numerous genes and pathways involved in a disease, making them useful therapeutic targets, but also difficult to study. miR-34a has been shown to increase in the serum, liver, pancreas, and subcutaneous (sc)WAT of patients with obesity, non- alcoholic fatty liver disease (NAFLD) and T2D. Additionally, miR-34a has been shown to regulate a number of metabolic and inflammatory genes in numerous cell types, including those in macrophages. However, the role of miR-34a in regulating vWAT metabolism and inflammation is poorly understood. Hypothesis: miR-34a is dysregulated in the adipose tissue during obesity, causing dysregulation of metabolic and inflammatory pathways in adipocytes and ATMs that contribute to adipose inflammation and obesity’s comorbidities, particularly T2D. Method/Results: The role of miR-34a in adipose inflammation was investigated using a murine miR-34a-/- diet-induced obesity model, and primary in vitro models of adipocyte differentiation and inflammatory bone marrow-derived macrophages (BMDMs). miR-34a was shown to be ubiquitously expressed throughout the murine epididymal (e)WAT of obese high-fat diet (HFD)-fed WT mice and ob/ob mice, as well as omental WAT from patients with obesity. Additionally, miR-34a transcripts were increased in the liver and brown adipose tissue (BAT) of ob/ob and HFD-fed WT mice, compared to WT controls. When miR-34a-/- mice were fed HFD ad libitum for 24 weeks they were significantly heavier than their WT counterparts by the end of the study. Ex vivo examinations showed that miR-34a-/- eWAT had a smaller adipocyte area on chow, which significantly increased to WT levels during HFD-feeding. Additionally, miR-34a-/- eWAT showed basal increases in cholesterol and fatty acid metabolism genes Cd36, Hmgcr, Lxrα, Pgc1α, and Fasn. miR-34a-/- iBAT showed basal reductions in Cebpα and Cebpβ, with increased Pgc1α expression during HFD- feeding. The miR-34a-/- liver additionally showed increased basal transcript expression of Pgc1α, suggesting miR-34a may broadly regulate PGC1α. Accompanying the ex vivo changes in cholesterol and fatty acid metabolism genes, in vitro miR-34a-/- white adipocytes showed increased lipid content. An F4/80high macrophage population was identified in HFD-fed miR-34a-/- eWAT, with increased Il-10 transcripts and serum IL-5 protein. Following these ex vivo observations, BMDMs from WT mice upregulated miR-34a expression in response to TNFα stimulation. Additionally, miR-34a-/- BMDMs showed an ablated CXCL1 response to TNFα. Conclusion: These findings suggest miR-34a has a multi-factorial role in controlling a susceptibility to obesity, by regulating inflammatory and metabolic pathways, potentially through regulation of PGC1α.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During pregnancy, the maternal cardiovascular system undergoes major adaptation. One of these changes is a 40-50 % increase in circulating blood volume which requires a systemic remodelling of the vasculature in order to regulate maternal blood pressure and maximise blood supply to the developing placenta and fetus. These changes are broadly conserved between humans and rats making them an appropriate pre-clinical model in which to study the underlying mechanisms of pregnancy-dependent cardiovascular remodelling. Whilst women are normally protected against cardiovascular disease; pregnancy marks a period of time where women are susceptible to cardiovascular complications. Cardiovascular disease is the leading cause of maternal mortality in the United Kingdom; in particular hypertensive conditions are among the most common complications of pregnancy. One of the main underlying pathologies of these pregnancy complications is thought to be a failure of the maternal cardiovascular system to adapt. The remodelling of the uterine arteries, which directly supply the maternal-fetal interface, is paramount to a healthy pregnancy. Failure of the uterine arteries to remodel sufficiently can result in a number of obstetric complications such as preeclampsia, fetal growth restriction and spontaneous pregnancy loss. At present, it is poorly understood whether this deficient vascular response is due to a predisposition from existing maternal cardiovascular risk factors, the physiological changes that occur during pregnancy or a combination of both. Previous work in our group employed the stroke prone spontaneously hypertensive rat (SHRSP) as a model to investigate pregnancy-dependent remodelling of the uterine arteries. The SHRSP develops hypertension from 6 weeks of age and can be contrasted with the control strain, the Wistar Kyoto (WKY) rat. The phenotype of the SHRSP is therefore reflective of the clinical situation of maternal chronic hypertension during pregnancy. We showed that the SHRSP exhibited a deficient uterine artery remodelling response with respect to both structure and function accompanied by a reduction in litter size relative to the WKY at gestational day (GD) 18. A previous intervention study using nifedipine in the SHRSP achieved successful blood pressure reduction from 6 weeks of age and throughout pregnancy; however uterine artery remodelling and litter size at GD18 was not improved. We concluded that the abnormal uterine artery remodelling present in the SHRSP was independent of chronic hypertension. From these findings, we hypothesised that the SHRSP could be a novel model of spontaneously deficient uterine artery remodelling in response to pregnancy which was underpinned by other as yet unidentified cardiovascular risk factors. In Chapter 1 of this thesis, I have characterised the maternal, placental and fetal phenotype in pregnant (GD18) SHRSP and WKY. The pregnant SHRSP exhibit features of left ventricular hypertrophy in response to pregnancy and altered expression of maternal plasma biomarkers which have been previously associated with hypertension in human pregnancy. I developed a protocol for accurate dissection of the rat uteroplacental unit using qPCR probes specific for each layer. This allowed me to make an accurate and specific statement about gene expression in the SHRSP GD18 placenta; where oxidative stress related gene markers were increased in the vascular compartments. The majority of SHRSP placenta presented at GD18 with a blackened ring which encircled the tissue. Further investigation of the placenta using western blot for caspase 3 cleavage determined that this was likely due to increased cell death in the SHRSP placenta. The SHRSP also presented with a loss of one particular placental cell type at GD18: the glycogen cells. These cells could have been the target of cell death in the SHRSP placenta or were utilised early in pregnancy as a source of energy due to the deficient uterine artery blood supply. Blastocyst implantation was not altered but resorption rate was increased between SHRSP and WKY; indicating that the reduction in litter size in the SHRSP was primarily due to late (>GD14) pregnancy loss. Fetal growth was not restricted in SHRSP which led to the conclusion that SHRSP sacrifice part of their litter to deliver a smaller number of healthier pups. Activation of the immune system is a common pathway that has been implicated in the development of both hypertension and adverse pregnancy outcome. In Chapter 2, I proposed that this may be a mechanism of interest in SHRSP pregnancy and measured the pro-inflammatory cytokine, TNFα, as a marker of inflammation in pregnant SHRSP and WKY and in the placentas from these animals. TNFα was up-regulated in maternal plasma and urine from the GD18 SHRSP. In addition, TNFα release was increased from the GD18 SHRSP placenta as was the expression of the pro-inflammatory TNFα receptor 1 (Tnfr1). In order to investigate whether this excess TNFα was detrimental to SHRSP pregnancy, a vehicle-controlled intervention study using etanercept (a monoclonal antibody which works as a TNFα antagonist) was carried out. Etanercept treatment at GD0, 6, 12 and 18 resulted in an improvement in pregnancy outcome in the SHRSP with an increased litter size and reduced resorption rate. Furthermore, there was an improved uterine artery function in GD18 SHRSP treated with etanercept which was associated with an improved uterine artery blood flow over the course of gestation. In Chapter 3, I sought to identify the source of this detrimental excess of TNFα by designing a panel for maternal leukocytes in the blood and placenta at GD18. A population of CD3- CD161+ cells, which are defined as rat natural killer (NK) cells, were increased in number in the SHRSP. Intracellular flow cytometry also identified this cell type as a source of excess TNFα in blood and placenta from pregnant SHRSP. I then went on to evaluate the effects of etanercept treatment on these CD3- CD161+ cells and showed that etanercept reduced the expression of CD161 and the cytotoxic molecule, granzyme B, in the NK cells. Thus, etanercept limits the cytotoxicity and potential damaging effect of these NK cells in the SHRSP placenta. Analysing the urinary peptidome has clinical potential to identify novel pathways involved with disease and/or to develop biomarker panels to aid and stratify diagnosis. In Chapter 4, I utilised the SHRSP as a pre-clinical model to identify novel urinary peptides associated with hypertensive pregnancy. Firstly, a characterisation study was carried out in the kidney of the WKY and SHRSP. Urine samples from WKY and SHRSP taken at pre-pregnancy, mid-pregnancy (GD12) and late pregnancy (GD18) were used in the peptidomic screen. In order to capture peptides which were markers of hypertensive pregnancy from the urinary peptidomic data, I focussed on those that were only changed in a strain dependent manner at GD12 and 18 and not pre-pregnancy. Peptide fragments from the uromodulin protein were identified from this analysis to be increased in pregnant SHRSP relative to pregnant WKY. This increase in uromodulin was validated at the SHRSP kidney level using qPCR. Uromodulin has previously been identified to be a candidate molecule involved in systemic arterial hypertension but not in hypertensive pregnancy thus is a promising target for further study. In summary, we have characterised the SHRSP as the first model of maternal chronic hypertension during pregnancy and identified that inflammation mediated by TNFα and NK cells plays a key role in the pathology. The evidence presented in this thesis establishes the SHRSP as a pre-clinical model for pregnancy research and can be continued into clinical studies in pregnant women with chronic hypertension which remains an area of unmet research need.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Growth rods are commonly used for the treatment of scoliosis in the immature spine. Many variations have been proposed but breakage of implants is a common problem. Growth rod insertion commonly involves large exposures at initial insertion followed by multiple smaller procedures for lengthening. We present our early experiences using a percutaneous technique of insertion of a new titanium mobile bearing implant (Medtronic Inc). The implant allows some rotatory motion in the middle of the construct thus reducing construct stresses and thus possibly reducing rod breakage risk. Based on this small initial series with 12 months follow-up, percutaneous insertion of growth rods using the new implant is a safe and reliable technique although the infection rate in our sample was of note. This may be related to the titanium wear and inflammation seen in the soft tissues at time of operation and visualised on histology. No implants have required removal due to infection, and all infections were treated with debridement at next lengthening and suppressive antibiotics. Propionibacterium is one of the commonest infections seen with spinal implants and sometimes does not respond to simple antibiotic suppression. The technique allows preservation of the soft tissues until definitive fusion is needed and may lead to a decrease in hospital stay. The implant is low profile and seems to offer advantages over other systems on the market. Further follow up is needed to look at longer term outcomes with this new implant type.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Centers for Disease Control Guidelines recommend replacement of peripheral intravenous (IV) catheters every 72 to 96 hours. Routine replacement is thought to reduce the risk of phlebitis and bacteraemia. Catheter insertion is an unpleasant experience for patients and replacement may be unnecessary if the catheter remains functional and there are no signs of inflammation. Costs associated with routine replacement may be considerable. Objectives To assess the effects of removing peripheral IV catheters when clinically indicated compared with removing and re-siting the catheter routinely.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non Alcoholic Fatty Liver Disease (NAFLD) is a condition that is frequently seen but seldom investigated. Until recently, NAFLD was considered benign, self-limiting and unworthy of further investigation. This opinion is based on retrospective studies with relatively small numbers and scant follow-up of histology data. (1) The prevalence for adults, in the USA is, 30%, and NAFLD is recognized as a common and increasing form of liver disease in the paediatric population (1). Australian data, from New South Wales, suggests the prevalence of NAFLD in “healthy” 15 year olds as being 10%.(2) Non-alcoholic fatty liver disease is a condition where fat progressively invades the liver parenchyma. The degree of infiltration ranges from simple steatosis (fat only) to steatohepatitis (fat and inflammation) steatohepatitis plus fibrosis (fat, inflammation and fibrosis) to cirrhosis (replacement of liver texture by scarred, fibrotic and non functioning tissue).Non-alcoholic fatty liver is diagnosed by exclusion rather than inclusion. None of the currently available diagnostic techniques -liver biopsy, liver function tests (LFT) or Imaging; ultrasound, Computerised tomography (CT) or Magnetic Resonance Imaging (MRI) are specific for non-alcoholic fatty liver. An association exists between NAFLD, Non Alcoholic Steatosis Hepatitis (NASH) and irreversible liver damage, cirrhosis and hepatoma. However, a more pervasive aspect of NAFLD is the association with Metabolic Syndrome. This Syndrome is categorised by increased insulin resistance (IR) and NAFLD is thought to be the hepatic representation. Those with NAFLD have an increased risk of death (3) and it is an independent predictor of atherosclerosis and cardiovascular disease (1). Liver biopsy is considered the gold standard for diagnosis, (4), and grading and staging, of non-alcoholic fatty liver disease. Fatty-liver is diagnosed when there is macrovesicular steatosis with displacement of the nucleus to the edge of the cell and at least 5% of the hepatocytes are seen to contain fat (4).Steatosis represents fat accumulation in liver tissue without inflammation. However, it is only called non-alcoholic fatty liver disease when alcohol - >20gms-30gms per day (5), has been excluded from the diet. Both non-alcoholic and alcoholic fatty liver are identical on histology. (4).LFT’s are indicative, not diagnostic. They indicate that a condition may be present but they are unable to diagnosis what the condition is. When a patient presents with raised fasting blood glucose, low HDL (high density lipoprotein), and elevated fasting triacylglycerols they are likely to have NAFLD. (6) Of the imaging techniques MRI is the least variable and the most reproducible. With CT scanning liver fat content can be semi quantitatively estimated. With increasing hepatic steatosis, liver attenuation values decrease by 1.6 Hounsfield units for every milligram of triglyceride deposited per gram of liver tissue (7). Ultrasound permits early detection of fatty liver, often in the preclinical stages before symptoms are present and serum alterations occur. Earlier, accurate reporting of this condition will allow appropriate intervention resulting in better patient health outcomes. References 1. Chalasami N. Does fat alone cause significant liver disease: It remains unclear whether simple steatosis is truly benign. American Gastroenterological Association Perspectives, February/March 2008 www.gastro.org/wmspage.cfm?parm1=5097 Viewed 20th October, 2008 2. Booth, M. George, J.Denney-Wilson, E: The population prevalence of adverse concentrations with adiposity of liver tests among Australian adolescents. Journal of Paediatrics and Child Health.2008 November 3. Catalano, D, Trovato, GM, Martines, GF, Randazzo, M, Tonzuso, A. Bright liver, body composition and insulin resistance changes with nutritional intervention: a follow-up study .Liver Int.2008; February 1280-9 4. Choudhury, J, Sanysl, A. Clinical aspects of Fatty Liver Disease. Semin in Liver Dis. 2004:24 (4):349-62 5. Dionysus Study Group. Drinking factors as cofactors of risk for alcohol induced liver change. Gut. 1997; 41 845-50 6. Preiss, D, Sattar, N. Non-alcoholic fatty liver disease: an overview of prevalence, diagnosis, pathogenesis and treatment considerations. Clin Sci.2008; 115 141-50 7. American Gastroenterological Association. Technical review on nonalcoholic fatty liver disease. Gastroenterology.2002; 123: 1705-25

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION Inflammation is a protective attempt to facilitate the removal of damaged tissue and to initiate the healing response in other tissues. However, after spinal cord injury (SCI), this response is prolonged leading to secondary degeneration and glial scarring. Here, we investigate the potential of sustained delivery of pro-inflammatory factors vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF) to increase early inflammatory events and promote inflammatory resolution. Method Animal ethics approval was obtained from the Queensland University of Technology. Adult Wistar-Kyoto rats (12-16 weeks old) were subjected to laminectomies and T10 hemisections. Animals were then randomised to treatment (implantation of osmotic pump (Alzet) loaded with 5ug VEGF & 5 ug PDGF) or control groups (lesion control or lesion plus pump delivering PBS). Rats were sacrificed at one month and the spinal cords were harvested and examined by immunohistology, using anti-neurofilament-200(NF200) and anti- ionized calcium binding adapter molecule 1 (Iba1). One way ANOVA was used for statistic analysis. Results At 1 month, active pump-treated cords showed a high level of axonal filament throughout the defects as compared to the control groups. The mean lesion size, as measured by NF200, was 0.47mm2 for the lesion control, 0.39mm2 for the vehicle control and 0.078mm2 for the active pump group. Significant differences were detected between the active pump group and the two control groups (AP vs LC p= 0.017 AG vs VC p= 0.004). Iba-1 staining also showed significant differences in the post-injury inflammatory response. Discussion We have shown that axons and activated microglia are co-located in the lesion of the treated cord. We hypothesise the delivery of VEGF/PDGF increases the local vessel permeability to inflammatory cells and activates these along with the resident microglia to threshold population, which ultimately resolved the prolonged inflammation. Here, we have shown that maintaining the inflammatory signals for at least 7 days improved the morphology of the injured cord. Conclusion This study has shown that boosting inflammation, by delivery VEGF/PDGF, in the early phase of SCI helps to reduce secondary degeneration and may promote inflammation resolution. This treatment may provide a platform for other neuro-regenrative therapies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chlamydia trachomatis infections have been implicated in problems such as pelvic inflammatory disease and infertility in females. Although there are some studies examining the kinetics of ascending infection, there is limited information on the kinetics of pathology development and cellular infiltrate into the reproductive tissues in relation to the effects of inoculating dose, and a better understanding of these is needed. The murine model of female genital tract Chlamydia muridarum infection is frequently used as a model of human C. trachomatis reproductive tract infection. To investigate the kinetics of ascending genital infection and associated pathology development, female BALB/c mice were intravaginally infected with C. muridarum at doses ranging from 5102 to 2.6106 inclusion forming units. We found that the inoculating dose affects the course of infection and the ascension of bacteria, with the highest dose ascending rapidly to the oviducts. By comparison, the lowest dose resulted in the greatest bacterial load in the lower reproductive tract. Interestingly, we found that the dose did not significantly affect inflammatory cell infiltrate in the various regions. Overall, this data show the effects of infectious dose on the kinetics of ascending chlamydial infection and associated inflammatory infiltration in BALB/c mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ghrelin is a gut-brain peptide hormone that induces appetite, stimulates the release of growth hormone, and has recently been shown to ameliorate inflammation. Recent studies have suggested that ghrelin may play a potential role in inflammation-related diseases such as inflammatory bowel diseases (IBD). A previous study with ghrelin in the TNBS mouse model of colitis demonstrated that ghrelin treatment decreased the clinical severity of colitis and inflammation and prevented the recurrence of disease. Ghrelin may be acting at the immunological and epithelial level as the ghrelin receptor (GHSR) is expressed by immune cells and intestinal epithelial cells. The current project investigated the effect of ghrelin in a different mouse model of colitis using dextran sodium sulphate (DSS) – a luminal toxin. Two molecular weight forms of DSS were used as they give differing effects (5kDa and 40kDa). Ghrelin treatment significantly improved clinical colitis scores (p=0.012) in the C57BL/6 mouse strain with colitis induced by 2% DSS (5kDa). Treatment with ghrelin suppressed colitis in the proximal colon as indicated by reduced accumulative histopathology scores (p=0.03). Whilst there was a trend toward reduced scores in the mid and distal colon in these mice this did not reach significance. Ghrelin did not affect histopathology scores in the 40kDa model. There was no significant effect on the number of regulatory T cells or TNF-α secretion from cultured lymph node cells from these mice. The discovery of C-terminal ghrelin peptides, for example, obestatin and the peptide derived from exon 4 deleted proghrelin (Δ4 preproghrelin peptide) have raised questions regarding their potential role in biological functions. The current project investigated the effect of Δ4 peptide in the DSS model of colitis however no significant suppression of colitis was observed. In vitro epithelial wound healing assays were also undertaken to determine the effect of ghrelin on intestinal epithelial cell migration. Ghrelin did not significantly improve wound healing in these assays. In conclusion, ghrelin treatment displays a mild anti-inflammatory effect in the 5kDa DSS model. The potential mechanisms behind this effect and the disparity between these results and those published previously will be discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The New Zealand green lipped mussel preparation Lyprinol is available without a prescription from a supermarket, pharmacy or Web. The Food and Drug Administration have recently warned Lyprinol USA about their extravagant anti-inflammatory claims for Lyprinol appearing on the web. These claims are put to thorough review. Lyprinol does have anti-inflammatory mechanisms, and has anti-inflammatory effects in some animal models of inflammation. Lyprinol may have benefits in dogs with arthritis. There are design problems with the clinical trials of Lyprinol in humans as an anti-inflammatory agent in osteoarthritis and rheumatoid arthritis, making it difficult to give a definite answer to how effective Lyprinol is in these conditions, but any benefit is small. Lyprinol also has a small benefit in atopic allergy. As anti-inflammatory agents, there is little to choose between Lyprinol and fish oil. No adverse effects have been reported with Lyprinol. Thus, although it is difficult to conclude whether Lyprinol does much good, it can be concluded that Lyprinol probably does no major harm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two areas of particular importance in prostate cancer progression are primary tumour development and metastasis. These processes involve a number of physiological events, the mediators of which are still being discovered and characterised. Serine proteases have been shown to play a major role in cancer invasion and metastasis. The recently discovered phenomenon of their activation of a receptor family known as the protease activated receptors (PARs) has extended their physiological role to that of signaling molecule. Several serine proteases are expressed by malignant prostate cancer cells, including members of the kallikreinrelated peptidase (KLK) serine protease family, and increasingly these are being shown to be associated with prostate cancer progression. KLK4 is highly expressed in the prostate and expression levels increase during prostate cancer progression. Critically, recent studies have implicated KLK4 in processes associated with cancer. For example, the ectopic over-expression of KLK4 in prostate cancer cell lines results in an increased ability of these cells to form colonies, proliferate and migrate. In addition, it has been demonstrated that KLK4 is a potential mediator of cellular interactions between prostate cancer cells and osteoblasts (bone forming cells). The ability of KLK4 to influence cellular behaviour is believed to be through the selective cleavage of specific substrates. Identification of relevant in vivo substrates of KLK4 is critical to understanding the pathophysiological roles of this enzyme. Significantly, recent reports have demonstrated that several members of the KLK family are able to activate PARs. The PARs are relatively new members of the seven transmembrane domain containing G protein coupled receptor (GPCR) family. PARs are activated through proteolytic cleavage of their N-terminus by serine proteases, the resulting nascent N-terminal binds intramolecularly to initiate receptor activation. PARs are involved in a number of patho-physiological processes, including vascular repair and inflammation, and a growing body of evidence suggests roles in cancer. While expression of PAR family members has been documented in several types of cancers, including prostate, the role of these GPCRs in prostate cancer development and progression is yet to be examined. Interestingly, several studies have suggested potential roles in cellular invasion through the induction of cytoskeletal reorganisation and expression of basement membrane-degrading enzymes. Accordingly, this program of research focussed on the activation of the PARs by the prostate cancer associated enzyme KLK4, cellular processing of activated PARs and the expression pattern of receptor and agonist in prostate cancer. For these studies KLK4 was purified from the conditioned media of stably transfected Sf9 insect cells expressing a construct containing the complete human KLK4 coding sequence in frame with a V5 epitope and poly-histidine encoding sequences. The first aspect of this study was the further characterisation of this recombinant zymogen form of KLK4. The recombinant KLK4 zymogen was demonstrated to be activatable by the metalloendopeptidase thermolysin and amino terminal sequencing indicated that thermolysin activated KLK4 had the predicted N-terminus of mature active KLK4 (31IINED). Critically, removal of the pro-region successfully generated a catalytically active enzyme, with comparable activity to a previously published recombinant KLK4 produced from S2 insect cells. The second aspect of this study was the activation of the PARs by KLK4 and the initiation of signal transduction. This study demonstrated that KLK4 can activate PAR-1 and PAR-2 to mobilise intracellular Ca2+, but failed to activate PAR-4. Further, KLK4 activated PAR-1 and PAR-2 over distinct concentration ranges, with KLK4 activation and mobilisation of Ca2+ demonstrating higher efficacy through PAR-2. Thus, the remainder of this study focussed on PAR-2. KLK4 was demonstrated to directly cleave a synthetic peptide that mimicked the PAR-2 Nterminal activation sequence. Further, KLK4 mediated Ca2+ mobilisation through PAR-2 was accompanied by the initiation of the extra-cellular regulated kinase (ERK) cascade. The specificity of intracellular signaling mediated through PAR-2 by KLK4 activation was demonstrated by siRNA mediated protein depletion, with a reduction in PAR-2 protein levels correlating to a reduction in KLK4 mediated Ca2+mobilisation and ERK phosphorylation. The third aspect of this study examined cellular processing of KLK4 activated PAR- 2 in a prostate cancer cell line. PAR-2 was demonstrated to be expressed by five prostate derived cell lines including the prostate cancer cell line PC-3. It was also demonstrated by flow cytometry and confocal microscopy analyses that activation of PC-3 cell surface PAR-2 by KLK4 leads to internalisation of this receptor in a time dependent manner. Critically, in vivo relevance of the interaction between KLK4 and PAR-2 was established by the observation of the co-expression of receptor and agonist in primary prostate cancer and prostate cancer bone lesion samples by immunohistochemical analysis. Based on the results of this study a number of exciting future studies have been proposed, including, delineating differences in KLK4 cellular signaling via PAR-1 and PAR-2 and the role of PAR-1 and PAR-2 activation by KLK4 in prostate cancer cells and bone cells in prostate cancer progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 1AR has two binding sites which can be activated to cause cardiostimulation. The first, termed, 1HAR (high affinity site of 1AR) is activated by noradrenaline and adrenaline and is blocked by relatively low concentrations of β-blockers including carvedilol (Kaumann and Molenaar, 2008). The other, termed, 1LAR (low affinity site of 1AR) has lower affinity for noradrenaline and adrenaline and is activated by some β-blockers including CGP12177 and pindolol, at higher concentrations than those required to block the receptor (Kaumann and Molenaar, 2008). (-)-CGP12177 is a non-conventional partial agonist that causes modest and transient increases of contractile force in human atrial trabeculae (Kaumann and Molenaar, 2008). These effects are markedly increased and maintained by inhibition of phosphodiesterase PDE3. The stimulant effects of (-)-CGP12177 at human β1ARs was verified with recombinant receptors (Kaumann and Molenaar, 2008). However, in a recent report it was proposed that the positive inotropic effects of CGP12177 are mediated through 3ARs in human right atrium (Skeberdis et al 2008). This proposal was not consistent with the lack of blockade of (-)-CGP12177 inotropic effects or increases in L-type Ca2+ current (ICa-L ) by the β3AR blocker 1 μM LY748,337 (Christ et al, 2010). On the otherhand, (-)-CGP12177 increases in inotropic effects and ICa-L were blocked by (-)-bupranolol 1-10 μM (Christ et al, 2010). Chronic infusion of (-)-CGP 12177 (10 mg/Kg/24 hours) for four weeks in an aortic constriction mouse model of heart failure caused an increase in left ventricular wall thickness, fibrosis and inflammation-related left ventricular gene expression levels. Christ T et al (2010) Br J Pharmacol, In press Kaumann A and Molenaar P (2008) Pharmacol Ther 118, 303-336 Skeberdis VA et al (2008) J Clin Invest, 118, 3219-3227

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leukocytes are critical effectors of inflammation and tumor biology. Chemokine-like factors produced by such inflammatory sites are key mediators of tumor growth that activate leukocytic recruitment and tumor infiltration and suppress immune surveillance. Here we report that the endocrine peptide hormone, relaxin, is a regulator of leukocyte biology with properties important in recruitment to sites of inflammation. This study uses the human monocytic cell line THP-1 and normal human peripheral blood mononuclear cells to define a novel role for relaxin in regulation of leukocyte adhesion and migration. Our studies indicate that relaxin promotes adenylate cyclase activation, substrate adhesion, and migratory capacity of mononuclear leukocytes through a relaxin receptor LGR7-dependent mechanism. Relaxin-stimulated cAMP accumulation was observed to occur primarily in non-adherent cells. Relaxin stimulation results in increased substrate adhesion and increased migratory activity of leukocytes. In addition, relaxin-stimulated substrate adhesion resulted in enhanced chemotaxis to monocyte chemoattractant protein-1. These responses in THP-1 and peripheral blood mononuclear cells are relaxin dose-dependent and proportional to cAMP accumulation. We further demonstrate that LGR7 is critical for mediating these biological responses by use of RNA interference lentiviral short hairpin constructs. In summary, we provide evidence that relaxin is a novel leukocyte stimulatory agent with properties affecting adhesion and chemomigration

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: With growing recognition of the role of inflammation in the development of chronic and acute disease, fish oil is increasingly used as a therapeutic agent, but the nature of the intervention may pose barriers to adherence in clinical populations. Our objective was to investigate the feasibility of using a fish oil supplement in hemodialysis patients. ---------- Design: This was a nonrandomized intervention study.---------- Setting: Eligible patients were recruited at the Hemodialysis Unit of Wesley Hospital, Brisbane, Queensland, Australia. Patients The sample included 28 maintenance hemodialysis patients out of 43 eligible patients in the unit. Exclusion criteria included patients regularly taking a fish oil supplement at baseline, receiving hemodialysis for less than 3 months, or being unable to give informed consent.---------- Intervention: Eicosapentaenoic acid (EPA) was administered at 2000 mg/day (4 capsules) for 12 weeks. Adherence was measured at baseline and weekly throughout the study according to changes in plasma EPA, and was further measured subjectively by self-report.---------- Results: Twenty patients (74%) adhered to the prescription based on changes in plasma EPA, whereas an additional two patients self-reported good adherence. There was a positive relationship between fish oil intake and change in plasma EPA. Most patients did not report problems with taking the fish oil. Using the baseline data, it was not possible to characterize adherent patients.---------- Conclusions: Despite potential barriers, including the need to take a large number of prescribed medications already, 74% of hemodialysis patients adhered to the intervention. This study demonstrated the feasibility of using fish oil in a clinical population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ureaplasma species are the bacteria most frequently isolated from human amniotic fluid in asymptomatic pregnancies and placental infections. Ureaplasma parvum serovars 3 and 6 are the most prevalent serovars isolated from men and women. We hypothesized that the effects on the fetus and chorioamnion of chronic ureaplasma infection in amniotic fluid are dependent on the serovar, dose, and variation of the ureaplasma multiple banded antigen (MBA) and mba gene. We injected high- or low dose U. parvum serovar 3, serovar 6, or vehicle intra-amniotically into pregnant ewes at 55 days of gestation (term = 150 days) and examined the chorioamnion, amniotic fluid, and fetal lung tissue of animals delivered by cesarean section at 125 days of gestation. Variation of the multiple banded antigen/mba generated by serovar 3 and serovar 6 ureaplasmas in vivo were compared by PCR assay and Western blot. Ureaplasma inoculums demonstrated only one (serovar 3) or two (serovar 6) MBA variants in vitro, but numerous antigenic variants were generated in vivo: serovar 6 passage 1 amniotic fluid cultures contained more MBA size variants than serovar 3 (P = 0.005),and ureaplasma titers were inversely related to the number of variants (P = 0.025). The severity of chorioamnionitis varied between animals. Low numbers of mba size variants (five or fewer) within amniotic fluid were associated with severe inflammation, whereas the chorioamnion from animals with nine or more mba variants showed little or no inflammation. These differences in chorioamnion inflammation may explain why not all women with in utero Ureaplasma spp. experience adverse pregnancy outcomes.