927 resultados para nerve growth factor
Resumo:
The societal cost for the average health authority in the United Kingdom for the care of wet age-related macular degeneration (AMD) has been suggested to be around £7.4 million. It is vital that the best possible care based on the best available evidence is provided to reduce the impact of AMD on patients' lives and the financial cost to the health-care system. This study explored the experiences of AMD patients treated with intravitreal ranibizumab injections. Three semistructured interviews were conducted with seven participants over the course of 18 months. Transcripts were analysed using interpretative phenomenological analysis. Analysis identified four themes: preparing for treatment, the treatment process, patient-provider communication, and results of treatment. Patient experiences highlighted the need to move away from the reliance on letters for information provision, and the need for clearer guidelines about when to cease AMD treatment. Interviews highlighted the need for the inclusion of rigorous qualitative evidence with experiential data in future good clinical practice guideline development for AMD. © The Author(s) 2013.
Resumo:
Insulin-like growth factor-I (IGF-I) has been shown to attenuate protein degradation in murine myotubes induced by angiotensin II through downregulation of the ubiquitin-proteasome pathway, although the mechanism is not known. Angiotensin II is known to upregulate this pathway through a cellular signalling mechanism involving release of arachidonic acid, activation of protein kinase Cα (PKCα), degradation of inhibitor-κB (I-κB) and nuclear migration of nuclear factor-κB (NF-κB), and all of these events were attenuated by IGF-I (13.2 nM). Induction of the ubiquitin-proteasome pathway has been linked to activation of the RNA-activated protein kinase (PKR), since an inhibitor of PKR attenuated proteasome expression and activity in response to angiotensin II and prevented the decrease in the myofibrillar protein myosin. Angiotensin II induced phosphorylation of PKR and of the eukaryotic initiation factor-2 (eIF2) on the α-subunit, and this was attenuated by IGF-I, by induction of the expression of protein phosphatase 1, which dephosphorylates PKR. Release of arachidonic acid and activation of PKCα by angiotensin II were attenuated by an inhibitor of PKR and IGF-I, and the effect was reversed by Salubrinal (15 μM), an inhibitor of eIF2α dephosphorylation, as was activation of PKCα. In addition myotubes transfected with a dominant-negative PKR (PKRΔ6) showed no release of arachidonate in response to Ang II, and no activation of PKCα. These results suggest that phosphorylation of PKR by angiotensin II was responsible for the activation of the PLA2/PKC pathway leading to activation of NF-κB and that IGF-I attenuates protein degradation due to an inhibitory effect on activation of PKR. © 2007 Elsevier Inc. All rights reserved.
Resumo:
OBJECTIVE: To investigate laboratory evidence of abnormal angiogenesis, hemorheologic factors, endothelial damage/dysfunction, and age-related macular degeneration (ARMD). DESIGN: Comparative cross-sectional study. PARTICIPANTS: We studied 78 subjects (26 men and 52 women; mean age 74 years; standard deviation [SD] 9.0) with ARMD attending a specialist referral clinic. Subjects were compared with 25 healthy controls (mean age, 71 years; SD, 11). INTERVENTION AND OUTCOME MEASURES: Levels of vascular endothelial growth factor (VEGF, an index of angiogenesis), hemorheologic factors (plasma viscosity, hematocrit, white cell count, hemoglobin, platelets), fibrinogen (an index of rheology and hemostasis), and von Willebrand factor (a marker of endothelial dysfunction) were measured. RESULTS: Median plasma VEGF (225 vs. 195 pg/ml, P = 0.019) and mean von Willebrand factor (124 vs. 99 IU/dl, P = 0.0004) were greater in ARMD subjects than the controls. Mean plasma fibrinogen and plasma viscosity levels were also higher in the subjects (both P < 0.0001). There were no significant differences in other indices between cases and controls. When "dry" (drusen, atrophy, n = 28) and "exudative" (n = 50) ARMD subjects were compared, there was no significant differences in VEGF, fibrinogen, viscosity, or von Willebrand factor levels. There were no significant correlations between the measured parameters. Stepwise multiple regression analysis did not demonstrate any significant clinical predictors (age, gender, smoking, body mass index, history of vascular disease, or hypertension) for plasma VEGF or fibrinogen levels, although smoking status was a predictor of plasma von Willebrand factor levels (P < 0.05). CONCLUSIONS: This study suggests an association between markers of angiogenesis (VEGF), hemorheologic factors, hemostasis, endothelial dysfunction, and ARMD. The interaction between abnormal angiogenesis and the components of Virchow's triad for thrombogenesis may in part contribute to the pathogenesis of ARMD.
Resumo:
Background: Proliferative diabetic retinopathy (PDR) may be a response to abnormal angiogenic growth factors such as vascular endothelial growth factor (VEGF), angiopoietin-2 (Ang-2), and the soluble angiopoietin receptor tie-2. The authors hypothesised the following: (a) there are differences in plasma levels of these growth factors in different grades of diabetic retinopathy; and (b) that the effects of intervention with panretinal laser photocoagulation (PRP) for PDR, and angiotensin receptor blockade (using eprosartan) for patients with other grades of diabetic retinopathy will be to reduce levels of the growth factors. Methods: Cross sectional and interventional study (using PRP and eprosartan) in diabetic patients. VEGF, Ang-2, and tie-2 were measured by ELISA. Results: VEGF (p<0.001) and Ang-2 levels (p<0.001) were significantly higher in 93 diabetic patients compared to 20 healthy controls, with the highest levels in grade 2 and grade 3 diabetic retinopathy (p<0.05). Tie-2 was lower in diabetics compared to controls (p = 0.008), with no significant differences between the diabetic subgroups. Overall, VEGF significantly correlated with Ang-2 (p<0.001) and tie-2 (p = 0.004) but the correlation between Ang-2 and tie-2 levels was not significant (p = 0.065). Among diabetic patients only, VEGF levels were significantly correlated with Ang-2 (p<0.001) and tie-2 (p<0.001); the correlation between Ang-2 and tie-2 levels was also significant (p<0.001). There were no statistically significant effects of laser photocoagulation on plasma VEGF, Ang-2, and tie-2 in the 19 patients with PDR, or any effects of eprosartan in the 28 patients with non-proliferative diabetic retinopathy. Conclusion: Increased plasma levels of VEGF and Ang-2, as well as lower soluble tie-2, were found in diabetic patients. The highest VEGF and Ang-2 levels were seen among patients with pre-proliferative and proliferative retinopathy, but there was no relation of tie-2 to the severity of retinopathy. As the majority of previous research into Ang-2 and tie-2 has been in relation to angiogenesis and malignancy, the present study would suggest that Ang-2 and tie-2 may be used as potential indices of angiogenesis in diabetes mellitus (in addition to VEGF) and may help elucidate the role of the angiopoietin/tie-2 system in this condition.
Resumo:
Vascular endothelial growth factor-A (VEGF) is critical for angiogenesis but fails to induce neovascularization in ischemic tissue lesions in mice lacking endothelial nitric oxide synthase (eNOS). VEGF receptor-2 (VEGFR-2) is critical for angiogenesis, although little is known about the precise role of endothelial VEGFR-1 and its downstream effectors in this process. Here we have used a chimeric receptor approach in which the extracellular domain of the epidermal growth factor receptor was substituted for that of VEGFR-1 (EGLT) or VEGFR-2 (EGDR) and transduced into primary cultures of human umbilical vein endothelial cells (HUVECs) using a retroviral system. Activation of HUVECs expressing EGLT or EGDR induced rapid phosphorylation of eNOS at Ser1177, release of NO, and formation of capillary networks, similar to VEGF. Activation of eNOS by VEGFR-1 was dependent on Tyr794 and was mediated via phosphatidylinositol 3-kinase, whereas VEGFR-2 Tyr951 was involved in eNOS activation via phospholipase Cgamma1. Consistent with these findings, the VEGFR-1-specific ligand placenta growth factor-1 activated phosphatidylinositol 3-kinase and VEGF-E, which is selective for VEGFR-2-activated phospholipase Cgamma1. Both VEGFR-1 and VEGFR-2 signal pathways converged on Akt, as dominant-negative Akt inhibited the NO release and in vitro tube formation induced following activation of EGLT and EGDR. The identification Tyr794 of VEGFR-1 as a key residue in this process provides direct evidence of endothelial VEGFR-1 in NO-driven in vitro angiogenesis. These studies provide new sites of modulation in VEGF-mediated vascular morphogenesis and highlight new therapeutic targets for management of vascular diseases.
Resumo:
Objective: There is evidence to suggest a beneficial role for growth factors, including vascular endothelial growth factor (VEGF), in tissue repair and proliferation after injury within the lung. Whether this effect is mediated predominantly by actions on endothelial cells or epithelial cells is unknown. This study tested the hypothesis that VEGF acts as an autocrine trophic factor for human adult alveolar epithelial cells and that under situations of pro-apoptotic stress, VEGF reduces cell death. Design: In vitro cell culture study looking at the effects of 0.03% H2O2 on both A549 and primary distal lung epithelial cells.Measurement and Main Results: Primary adult human distal lung epithelial cells express both the soluble and membrane-associated VEGF isoforms and VEGF receptors 1 and 2. At physiologically relevant doses, soluble VEGF isoforms stimulate wound repair and have a proliferative action. Specific receptor ligands confirmed that this effect was mediated by VEGF receptor 1. In addition to proliferation, we demonstrate that VEGF reduces A549 and distal lung epithelial cell apoptosis when administered after 0.03% H2O2 injury. This effect occurs due to reduced caspase-3 activation and is phosphatidylinositol 3′–kinase dependent. Conclusion: In addition to its known effects on endothelial cells, VEGF acts as a growth and anti-apoptotic factor on alveolar epithelial cells. VEGF treatment may have potential as a rescue therapy for diseases associated with alveolar epithelial damage such as acute respiratory distress syndrome.
Resumo:
VEGF receptor-2 plays a critical role in endothelial cell proliferation during angiogenesis. However, regulation of receptor activity remains incompletely explained. Here, we demonstrate that VEGF stimulates microvascular endothelial cell proliferation in a dose-dependent manner with VEGF-induced proliferation being greatest at 5 and 100 ng/ml and significantly reduced at intermediate concentrations (>50% at 20 ng/ml). Neutralization studies confirmed that signaling occurs via VEGFR-2. In a similar fashion, ERK/MAPK is strongly activated in response to VEGF stimulation as demonstrated by its phosphorylation, but with a decrease in phosphoryation at 20 ng/ml VEGF. Immunoblotting analysis revealed that VEGF did not cause a dose-dependent change in expression of VEGFR-2 but instead resulted in reduced phosphorylation of VEGFR-2 when cells were exposed to 10 and 20 ng/ml of VEGF. VEGFR-2 dephosphorylation was associated with an increase in the protein tyrosine phosphatase, SH-PTP1, and endothelial nitric oxide synthase (eNOS). Immunoprecipitation and selective immunoblotting confirmed the association between VEGFR-2 dephosphorylation and the upregulation of SH-PTP1 and eNOS. Transfection of endothelial cells with antisense oligonucleotide against VEGFR-2 completely abolished VEGF-induced proliferation, whereas anti SH-PTP1 dramatically increased VEGF-induced proliferation by 1 and 5-fold at 10 and 200 ng/ml VEGF, respectively. Suppression of eNOS expression only abolished endothelial cell proliferation at VEGF concentrations above 20 ng/ml. Taken together, these results indicate that activation of VEGFR-2 by VEGF enhances SH-PTP1 activity and eNOS expression, which in turn lead to two diverse events: one is that SH-PTP1 dephosphorylates VEGFR-2 and ERK/MAPK, which weaken VEGF mitogenic activity, and the other is that eNOS increases nitric oxide production which in turn lowers SH-PTP1 activity via S-nitrosylation.
Resumo:
Objective - During pregnancy, the human cervix undergoes angiogenic transformations. VEGF is expressed in cervical stroma and is proposed to play key roles in the process of cervical ripening and dilation. This study was conducted to evaluate whether cervical secretion of VEGF can be of clinical value in predicting impending PTB. Study Design - In an observational prospective cohort study, we analyzed cervical fluid samples from 103 pregnant women (GA: median [IQR]: 28 [25-31] wks) who presented for either a routine prenatal visit (n=61) or for evaluation of threatened preterm labor (n=42). Cervical secretions were collected under a standard protocol which was followed in all cases. Cervical length (CL) was assessed by transvaginal ultrasound using well-established criteria. Dilation was evaluated by digital exam performed only after collection of the biological samples. VEGF levels were immunoassayed by investigators unaware of the clinical outcome. Main exclusion criteria were ruptured membranes, active labor, vaginal bleeding, vaginal exam or intercourse within 24h. Results were analyzed with and without normalization for total protein. Results - 1) Clinical characteristics of the cohort are presented in Table;2) VEGF was detectable in all specimens, with no correlation between its levels, CL, twins or GA at collection; 3) There was an inverse correlation between VEGF and cervical dilation (R=-0.646, P=0.003); 4) Women with cervical dilation =1 cm had lower VEGF compared to those with a closed cervix (P=0.003); 5) Women who experienced PTB within 14 days (n=11) had lower VEGF (P=0.003); 6) A free VEGF level of =600 pg/mL had a sensitivity, specificity, +LR and -LR of 70%, 95%, 13.5 and 0.3, respectively in predicting PTB within 14 days. Conclusions - Low VEGF levels in the cervicovaginal secretions of pregnant women are associated with an increased risk of PTB within 2 weeks of collection. Active engagement of VEGF in the process of cervical ripening and dilatation and/or increased affinity of extracellular matrix components for VEGF may provide explanation for our findings.
Resumo:
Preeclampsia is an inflammatory disorder in which serum levels of vascular endothelial growth factor (VEGF) and its soluble receptor-1 (sVEGFR-1, also known as sFlt-1) are elevated. We hypothesize that VEGF and placenta growth factor (PlGF) are dysregulated in preeclampsia due to high levels of sVEGFR-1, which leads to impaired placental angiogenesis. Analysis of supernatants taken from preeclamptic placental villous explants showed a four-fold increase in sVEGFR-1 than normal pregnancies, suggesting that villous explants in vitro retain a hypoxia memory reflecting long-term fetal programming. The relative ratios of VEGF to sVEGFR-1and PlGF to sVEGFR-1 released from explants decreased by 53% and 70%, respectively, in preeclampsia compared with normal pregnancies. Exposure of normal villous explants to hypoxia increased sVEGFR-1 release compared with tissue normoxia (P<0.001), as did stimulation with tumor necrosis factor-α (P<0.01). Conditioned medium (CM) from normal villous explants induced endothelial cell migration and in vitro tube formation, which were both attenuated by pre-incubation with exogenous sVEGFR-1 (P<0.001). In contrast, endothelial cells treated with preeclamptic CM showed substantially reduced angiogenesis compared withnormal CM (P<0.001), which was not further decreased by the addition of exogenous sVEGFR-1, indicating a saturation of the soluble receptor.Removal of sVEGFR-1 by immunoprecipitation from preeclamptic CM significantly restored migration (P<0.001) and tube formation (P<0.001) to levels comparable to that induced by normal CM, demonstrating that elevated levels of sVEGFR-1 in preeclampsia are responsible for inhibiting angiogenesis. Our finding demonstrates the dysregulation of the VEGF/PlGF axis in preeclampsiaand offers an entirely new therapeutic approach to its treatment.
Resumo:
Vascular insufficiency and retinal ischemia precede many proliferative retinopathies and stimulate secretion of various vasoactive growth factors, including vascular endothelial growth factor (VEGF) and placenta growth factor (PlGF). It is unclear, however, how PlGF, which is elevated in proliferative diabetic retinopathy and is a VEGF homolog that binds only to VEGF receptor (VEGFR)-1, promotes pathological angiogenesis. When primary microvascular endothelial cells were grown on collagen gels, PlGF-containing ligands upregulated Bcl-2 expression and stimulated the formation of capillary-like tube networks that were retained for up to 14 days in culture. The inhibition of VEGFR-1 results in a dramatic decrease in the number of capillary connections, indicating that VEGFR-1 ligands promote branching angiogenesis. In contrast, VEGF-induced tube formations and Bcl-2 expression were significantly decreased at the end of this period. Flow cytometry analysis of annexin-V/propidium iodide-stained cells revealed that PlGF and PlGF/VEGF heterodimer inhibited apoptosis in serum-deprived endothelial cells. These two growth factors stimulated a survival signaling pathway phosphatidylinositol 3-kinase (PI3K), as identified by increased Akt phosphorylation and because blocking PI3K signalling by adenovirus-mediated overexpression of wild-type phosphatase and tensin homolog on chromosome 10 (PTEN) disrupted angiogenesis and decreased Bcl-2 expression by PlGF and PlGF/VEGF heterodimer, whereas a dominant-negative PTEN mutant enhanced endothelial sprout formation and Bcl-2 expression. Together, these findings indicate that PlGF-containing ligands contribute to pathological angiogenesis by prolonging cell survival signals and maintaining vascular networks.
Resumo:
Background: Vascular endothelial growth factor (VEGF) mediates endothelial cell mitogenesis and enhances vascular permeability. The existence of single or multiple VEGF isoforms and receptors suggests that these proteins may have overlapping but distinct functions, which may be reflected in their cell expression and distribution. Methods: The localisation of VEGFs A–C and their receptors (VEGFRs 1–3, respectively) in 30 fresh human atherosclerotic arteries, 15 normal uterine arteries, and 15 saphenous veins using immunohistochemistry and western blotting. Results: Saphenous veins showed no staining for VEGF-B or VEGFR-2. Smooth muscle cells (SMCs) showed the strongest staining for VEGF-A, VEGF-B, VEGFR-1, and VEGFR-2 in all specimens. Conversely, VEGFR-3 and VEGF-C were predominately localised to the endothelial vasa vasorum in normal arteries, whereas medial SMCs showed the strongest staining in atherosclerotic arteries. Western blotting showed variations in VEGF protein localisation, with lower amounts of VEGF-B and VEGF-C in saphenous veins, compared with arterial tissue. Amounts of VEGF-C were lower than those of VEGF-A and VEGF-B in all specimens. Conclusion: This study provides direct evidence of the presence of VEGF proteins and receptors in human physiology and pathology, with variations in both the amounts of VEGF proteins expressed and their cellular distribution in normal arteries compared with atherosclerotic arteries. The presence of VEGFs A–C and their receptors in normal arterial tissue implies that VEGF functions may extend beyond endothelial cell proliferation. Reduced VEGFR-2 staining in atherosclerotic arteries may have implications for the atherosclerosis process and the development of vascular disease and its complications.
Resumo:
Differential splicing of the flt-1 mRNA generates soluble variant of vascular endothelial growth factor (VEGF) receptor-1 (sVEGFR-1, also known as sFlt-1). The action of VEGF is antagonized by sVEGFR-1. Soluble VEGFR-1 binds to VEGF with a high affinity and therefore works to modulate VEGF and VEGF signaling pathway. In this study, the authors tested the hypothesis that VEGF-mediated endothelial cell angiogenesis is tightly modulated by the release of sVEGFR-1 and placental expression of sVEGFR-1 is upregulated by hypoxia. Immunolocalization studies showed progressively intense staining for sVEGFR-1 and VEGF in the trophoblast of placental villous explants throughout gestation. Endothelial cell migration studies using a modified Boyden's chamber showed a significant increase in cell migration in response to VEGF that was significantly attenuated in the presence of exogenous sVEGFR-1. Furthermore, stimulation of endothelial cells with VEGF led to a dose-dependent increase in the release of sVEGFR-1 as determined by enzyme-linked immunosorbent assay (ELISA). Exposure of normal placental villous explants to hypoxia (1% pO2) increased trophoblast expression of sVEGFR-1 when compared with tissue normoxia (5% pO2). In addition, conditioned media from hypoxia treated placental villous explants induced a significant increase in endothelial cell migration that was significantly reduced in presence of sVEGFR-1. Our study demonstrates that hypoxia positively regulates sVEGFR-1 protein expression in ex vivo trophoblasts, which control VEGF-driven angiogenesis.
Resumo:
Preeclampsia is a hypertensive disorder of pregnancy caused by abnormal placental function, partly because of chronic hypoxia at the utero-placental junction. The increase in levels of soluble vascular endothelial growth factor receptor 1, an antiangiogenic agent known to inhibit placental vascularization, is an important cellular factor implicated in the onset of preeclampsia. We investigated the ligand urotensin II (U-II), a potent endogenous vasoconstrictor and proangiogenic agent, for which levels have been reported to increase in patients with preeclampsia. We hypothesized that an increased sensitivity to U-II in preeclampsia might be achieved by upregulation of placental U-II receptors. We further investigated the role of U-II receptor stimulation on soluble vascular endothelial growth factor receptor 1 release in placental explants from diseased and normal patients. Immunohistochemistry, real-time PCR, and Western blotting analysis revealed that U-II receptor expression was significantly upregulated in preeclampsia placentas compared with controls (P<0.01). Cellular models of syncytiotrophoblast and vascular endothelial cells subjected to hypoxic conditions revealed an increase in U-II receptor levels in the syncytiotrophoblast model. This induction is regulated by the transcriptional activator hypoxia-inducible factor 1a. U-II treatment is associated with increased secretion of soluble vascular endothelial growth factor receptor 1 only in preeclamptic placental explants under hypoxia but not in control conditions. Interestingly, normal placental explants did not respond to U-II stimulation.
Resumo:
The proteinase-activated receptor 2 (PAR-2) expression is increased in endothelial cells derived from women with preeclampsia, characterized by widespread maternal endothelial damage, which occurs as a consequence of elevated soluble vascular endothelial growth factor receptor-1 (sVEGFR-1; commonly known as sFlt-1) in the maternal circulation. Because PAR-2 is upregulated by proinflammatory cytokines and activated by blood coagulation serine proteinases, we investigated whether activation of PAR-2 contributed to sVEGFR-1 release. PAR-2–activating peptides (SLIGRL-NH2 and 2-furoyl-LIGRLO-NH2) and factor Xa increased the expression and release of sVEGFR-1 from human umbilical vein endothelial cells. Enzyme-specific, dominant-negative mutants and small interfering RNA were used to demonstrate that PAR-2–mediated sVEGFR-1 release depended on protein kinase C-ß1 and protein kinase C-e, which required intracellular transactivation of epidermal growth factor receptor 1, leading to mitogen-activated protein kinase activation. Overexpression of heme oxygenase 1 and its gaseous product, carbon monoxide, decreased PAR-2–stimulated sVEGFR-1 release from human umbilical vein endothelial cells. Simvastatin, which upregulates heme oxygenase 1, also suppressed PAR-2–mediated sVEGFR-1 release. These results show that endothelial PAR-2 activation leading to increased sVEGFR-1 release may contribute to the maternal vascular dysfunction observed in preeclampsia and highlights the PAR-2 pathway as a potential therapeutic target for the treatment of preeclampsia.
Resumo:
Background & Aims - Hepatitis C virus (HCV) infection leads to progressive liver disease, frequently culminating in fibrosis and hepatocellular carcinoma. The mechanisms underlying liver injury in chronic hepatitis C are poorly understood. This study evaluated the role of vascular endothelial growth factor (VEGF) in hepatocyte polarity and HCV infection. Methods - We used polarized hepatoma cell lines and the recently described infectious HCV Japanese fulminant hepatitis (JFH)-1 cell culture system to study the role of VEGF in regulating hepatoma permeability and HCV infection. Results - VEGF negatively regulates hepatocellular tight junction integrity and cell polarity by a novel VEGF receptor 2–dependent pathway. VEGF reduced hepatoma tight junction integrity, induced a re-organization of occludin, and promoted HCV entry. Conversely, inhibition of hepatoma expressed VEGF with the receptor kinase inhibitor sorafenib or with neutralizing anti-VEGF antibodies promoted polarization and inhibited HCV entry, showing an autocrine pathway. HCV infection of primary hepatocytes or hepatoma cell lines promoted VEGF expression and reduced their polarity. Importantly, treatment of HCV-infected cells with VEGF inhibitors restored their ability to polarize, showing a VEGF-dependent pathway. Conclusions - Hepatic polarity is critical to normal liver physiology. HCV infection promotes VEGF expression that depolarizes hepatoma cells, promoting viral transmission and lymphocyte migration into the parenchyma that may promote hepatocyte injury.