999 resultados para nanocrystalline metals


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current orthopaedic biomaterials research mainly focuses on designing implants that could induce controlled, guided and rapid healing. In the present study, the surface morphologies of titanium (Ti) and niobium (Nb) metals were tailored to form nanoporous, nanoplate and nanofibre-like structures through adjustment of the temperature in the alkali-heat treatment. The in vitro bioactivity of these structures was then evaluated by soaking the treated samples in simulated body fluid (SBF). It was found that the morphology of the modified surface significantly influenced the apatite-inducing ability. The Ti surface with a nanofibre-like structure showed better apatite-inducing ability than the nanoporous or nanoplate surface structures. A thick dense apatite layer formed on the Ti surface with nanofibre-like structure after 1 week of soaking in SBF. It is expected that the nanofibre-like surface could achieve good apatite formation in vivo and subsequently enhance osteoblast cell adhesion and bone formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, porous nickel foams with three different porosities (i.e. 50 %, 60 % and 70 %) were fabricated using the space-holding sintering method. Ammonium bicarbonate particles with sizes ranging from 1- 2 mm were chosen as the space-holding material. The anisotropic behaviours of the nickel foam samples were investigated by compressive testing loading at different directions, i.e., in both directions of the major and minor axis of ellipsoidal cells. Electron scanning microscopy (SEM) and Image-Pro Plus was used to characterise the morphological characteristics of the porous nickel foam samples. Results indicated that the porous nickel foam samples exhibited obvious anisotropic mechanical properties. The foam sample shows significantly higher nominal stress for loading in the direction of the major axis of the pores than loading in the direction of the minor axis of pores. The nominal stress increases with the decreasing of the porosity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO nanocrystalline powders doped with up to 5 at% manganese were synthesized and their photocatalytic activity was studied. Doped ZnO powders were prepared using a sol-gel process. The crystal structure and grain size of the particles were characterized by X-ray diffractometry and optical properties were studied using UV-Vis spectroscopy. The photoactivity of undoped and doped ZnO nanocrystalline powders was evaluated by monitoring the photo-bleaching of the aqueous solutions of Rhodamine B dye in the presence of ZnO under simulated sunlight. The results showed that up to 3 at% manganese were successfully doped into the nanocrystalline ZnO and that manganese-doping reduced the photocatalytic activity of ZnO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Raman and photoluminescence (PL) spectra of nanocrystalline zinc oxide produced by mechanochemical synthesis were measured using a pulsed nitrogen laser (337.1 nm) and xenon lamp (360 nm) as excitation sources in PL measurements and a cw Nd:YAG laser in Raman measurements. PL was observed in the range 400–800 nm. The Raman spectrum of nanocrystalline (90 nm) ZnO was compared to that of coarsegrained ZnO. The Raman bands of nanocrystalline zinc oxide were found to be shifted to lower frequencies and broadened. Laser radiation was shown to cause local heating of zinc oxide up to 1000 K, resulting in photoinduced formation of zinc nanoclusters. Mixtures of zinc oxide and sodium chloride powders are heated to substantially lower temperatures. Under nitrogen laser excitation, the green PL band (535 nm), characteristic of bulk ZnO, is shifted to longer wavelengths by 85 nm. The results are interpreted in terms of light confinement in zinc oxide microclusters consisting of large number of nanocrystallites. The photoinduced processes in question may be a viable approach to producing metal-insulator structures in globular photonic crystals, opals, filled with zinc oxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticulate TiO2 is of interest for a variety of technological applications, including optically transparent UV-filters and photocatalysts for the destruction of chemical waste. The successful use of nanoparticulate TiO2 in such applications requires an understanding of how the synthesis conditions effect the optical and photocatalytic properties. In this study, we have investigated the effect of heat treatment temperature on the properties of nanoparticulate TiO2 powders that were synthesised by solid-state chemical reaction of anhydrous TiOSO4 with Na2CO3. It was found that the photocatalytic activity increased with the heat treatment temperature up to a maximum at 600 °C and thereafter declined. In contrast, the optical transparency decreased monotonically with the heat treatment temperature. These results indicate that solid-state chemical reaction can be used to prepare powders of nanoparticulate TiO2 with properties that are optimised for use as either optically transparent UV-filters or photocatalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanochemical processing of anhydrous chloride precursors with Na2CO3 has been investigated as a means of manufacturing nanocrystalline SnO2 doped ZnO photocatalysts. High-energy milling and heat-treatment of a 0.1SnCl2+0.9ZnCl2+Na2CO3+4NaCl reactant mixture was found to result in the formation of a composite powder consisting of oxide grains embedded within a matrix of NaCl. Subsequent washing with deionized water resulted in removal of the NaCl matrix phase and partial hydration of the oxide reaction product with the consequent formation of ZnSn(OH)6. The extent of this hydration reaction was found to decrease in a linear fashion with the temperature of the post-milling heat-treatment over the range of 400–700 °C. For a heat-treatment temperature of 700 °C, the SnO2 doped ZnO powder was found to exhibit significantly higher photocatalytic activity than either single-phase SnO2 or ZnO powders that were synthesized using similar processing conditions. The heightened photocatalytic activity of the SnO2 doped ZnO was attributed to its higher specific surface area and the enhanced charge separation arising from the coupling of ZnO with SnO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanochemical processing of zirconium and yttrium chloride precursors with lithium hydroxide has been used to synthesise ultrafine powders of yttria-stabilised zirconia. The precursors reacted during milling to form a composite consisting of nanocrystalline oxide grains embedded within a matrix of lithium chloride. The ultrafine powder was recovered subsequently by removing the lithium chloride through washing with deionised water and methanol. The powders were characterised using X-ray diffraction (XRD), transmission electron microscopy (TEM), and BET gas adsorption. The sintering behaviour of cold pressed pellets was examined by dilatometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A distinct mesotexture seen in a nanocrystalline Ni–20Fe electrodeposit is described. The texture is characterized by a 0 0 1fibre axis perpendicular to the local curvature of the nodule growth surface. Each nodule contains of the order of 108 grains over its growth interface. The texture shows some similarity to traditional cobblestone patterns. Similar forms of mesotextures are likely to be ubiquitous in nanocrystalline electrodeposits and can be expected to affect the homogeneity and, possibly, anisotropy of the mechanical response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Examines the sheared edge quality of different automotive sheet metals resulting from the trimming process using experimental tooling and finite element modelling. The significant differences in burr, sliver and edge profile formation have been explained in terms of the strain distribution and tensile properties of the materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental and theoretical investigations of compression and extrusion of metals with steadily or cyclically rotating dies were carried out. Reasonably simple models were produced by classical plasticity theory and analytical equations were developed to establish a theoretical basis for the associated phenomena. Analytical solutions agreed well with the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The correlation between sulfur, metallothionein and heavy metals was investigated in biological samples from the aquatic environment. Samples of orange roughie, shark, goldfish and king crab were analysed for metals and sulfur. Results indicated that there was insufficient evidence to suggest any relationship between sulfur and total metals, but there was sufficient evidence to suggest a significant relationship existed between mercury and total sulfur in the biological tissues examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-performance dye-sensitized solar cells incorporating electrochemically stable non-volatile electrolytes are especially desirable devices. In particular, ionic liquid systems based on ethylmethylimidazolium dicyanamide seem to be promising for this purpose. These have triggered our interest in the properties of further ethylmethylimidazolium-based ionic liquids with anions which are close relatives of dicyanamide. In this study, the effect of three different anions, tricyanomethanide, dicyanamide and thiocyanate, on the performance of dye-sensitized solar cells have been investigated. Both the short circuit photocurrent and conversion efficiency are increased with decreasing viscosity of the ionic liquids under comparable conditions. A conversion efficiency of 2.1% at 30% light intensity was observed for the cell containing the tricyanomethanide salt, which has lowest viscosity among the three ionic liquids, while efficiencies of 0.7% and 1.7% at the same light intensity were observed in the case of dicyanamide and thiocyanate salts, respectively, as an electrolyte.