966 resultados para multidimensional data
Resumo:
The development of microfinance in Vietnam since 1990s has coincided with a remarkable progress in poverty reduction. Numerous descriptive studies have illustrated that microfinance is an effective tool to eradicate poverty in Vietnam but evidence from quantitative studies is mixed. This study contributes to the literature by providing new evidence on the impact of microfinance to poverty reduction in Vietnam using the repeated cross - sectional data from the Vietnam Living Standard s Survey (VLSS) during period 1992 - 2010. Our results show that micro - loans contribute significantly to household consumption.
Resumo:
The upstream oil and gas industry has been contending with massive data sets and monolithic files for many years, but “Big Data” is a relatively new concept that has the potential to significantly re-shape the industry. Despite the impressive amount of value that is being realized by Big Data technologies in other parts of the marketplace, however, much of the data collected within the oil and gas sector tends to be discarded, ignored, or analyzed in a very cursory way. This viewpoint examines existing data management practices in the upstream oil and gas industry, and compares them to practices and philosophies that have emerged in organizations that are leading the way in Big Data. The comparison shows that, in companies that are widely considered to be leaders in Big Data analytics, data is regarded as a valuable asset—but this is usually not true within the oil and gas industry insofar as data is frequently regarded there as descriptive information about a physical asset rather than something that is valuable in and of itself. The paper then discusses how the industry could potentially extract more value from data, and concludes with a series of policy-related questions to this end.
Resumo:
Long-term systematic population monitoring data sets are rare but are essential in identifying changes in species abundance. In contrast, community groups and natural history organizations have collected many species lists. These represent a large, untapped source of information on changes in abundance but are generally considered of little value. The major problem with using species lists to detect population changes is that the amount of effort used to obtain the list is often uncontrolled and usually unknown. It has been suggested that using the number of species on the list, the "list length," can be a measure of effort. This paper significantly extends the utility of Franklin's approach using Bayesian logistic regression. We demonstrate the value of List Length Analysis to model changes in species prevalence (i.e., the proportion of lists on which the species occurs) using bird lists collected by a local bird club over 40 years around Brisbane, southeast Queensland, Australia. We estimate the magnitude and certainty of change for 269 bird species and calculate the probabilities that there have been declines and increases of given magnitudes. List Length Analysis confirmed suspected species declines and increases. This method is an important complement to systematically designed intensive monitoring schemes and provides a means of utilizing data that may otherwise be deemed useless. The results of List Length Analysis can be used for targeting species of conservation concern for listing purposes or for more intensive monitoring. While Bayesian methods are not essential for List Length Analysis, they can offer more flexibility in interrogating the data and are able to provide a range of parameters that are easy to interpret and can facilitate conservation listing and prioritization. © 2010 by the Ecological Society of America.
Resumo:
Quantifying the competing rates of intake and elimination of persistent organic pollutants (POPs) in the human body is necessary to understand the levels and trends of POPs at a population level. In this paper we reconstruct the historical intake and elimination of ten polychlorinated biphenyls (PCBs) and five organochlorine pesticides (OCPs) from Australian biomonitoring data by fitting a population-level pharmacokinetic (PK) model. Our analysis exploits two sets of cross-sectional biomonitoring data for PCBs and OCPs in pooled blood serum samples from the Australian population that were collected in 2003 and 2009. The modeled adult reference intakes in 1975 for PCB congeners ranged from 0.89 to 24.5 ng/kg bw/day, lower than the daily intakes of OCPs ranging from 73 to 970 ng/kg bw/day. Modeled intake rates are declining with half-times from 1.1 to 1.3 years for PCB congeners and 0.83 to 0.97 years for OCPs. The shortest modeled intrinsic human elimination half-life among the compounds studied here is 6.4 years for hexachlorobenzene, and the longest is 30 years for PCB-74. Our results indicate that it is feasible to reconstruct intakes and to estimate intrinsic human elimination half-lives using the population-level PK model and biomonitoring data only. Our modeled intrinsic human elimination half-lives are in good agreement with values from a similar study carried out for the population of the United Kingdom, and are generally longer than reported values from other industrialized countries in the Northern Hemisphere.
Resumo:
Despite being used since 1976, Delusions-Symptoms-States-Inventory/states of Anxiety and Depression (DSSI/sAD) has not yet been validated for use among people with diabetes. The aim of this study was to examine the validity of the personal disturbance scale (DSSI/sAD) among women with diabetes using Mater-University of Queensland Study of Pregnancy (MUSP) cohort data. The DSSI subscales were compared against DSM-IV disorders, the Mental Component Score of the Short Form 36 (SF-36 MCS), and Center for Epidemiologic Studies Depression Scale (CES-D). Factor analyses, odds ratios, receiver operating characteristic (ROC) analyses and diagnostic efficiency tests were used to report findings. Exploratory factor analysis and fit indices confirmed the hypothesized two-factor model of DSSI/sAD. We found significant variations in the DSSI/sAD domain scores that could be explained by CES-D (DSSI-Anxiety: 55%, DSSI-Depression: 46%) and SF-36 MCS (DSSI-Anxiety: 66%, DSSI-Depression: 56%). The DSSI subscales predicted DSM-IV diagnosed depression and anxiety disorders. The ROC analyses show that although the DSSI symptoms and DSM-IV disorders were measured concurrently the estimates of concordance remained only moderate. The findings demonstrate that the DSSI/sAD items have similar relationships to one another in both the diabetes and non-diabetes data sets which therefore suggest that they have similar interpretations.
Resumo:
A number of online algorithms have been developed that have small additional loss (regret) compared to the best “shifting expert”. In this model, there is a set of experts and the comparator is the best partition of the trial sequence into a small number of segments, where the expert of smallest loss is chosen in each segment. The regret is typically defined for worst-case data / loss sequences. There has been a recent surge of interest in online algorithms that combine good worst-case guarantees with much improved performance on easy data. A practically relevant class of easy data is the case when the loss of each expert is iid and the best and second best experts have a gap between their mean loss. In the full information setting, the FlipFlop algorithm by De Rooij et al. (2014) combines the best of the iid optimal Follow-The-Leader (FL) and the worst-case-safe Hedge algorithms, whereas in the bandit information case SAO by Bubeck and Slivkins (2012) competes with the iid optimal UCB and the worst-case-safe EXP3. We ask the same question for the shifting expert problem. First, we ask what are the simple and efficient algorithms for the shifting experts problem when the loss sequence in each segment is iid with respect to a fixed but unknown distribution. Second, we ask how to efficiently unite the performance of such algorithms on easy data with worst-case robustness. A particular intriguing open problem is the case when the comparator shifts within a small subset of experts from a large set under the assumption that the losses in each segment are iid.
Resumo:
The majority of sugar mill locomotives are equipped with GPS devices from which locomotive position data is stored. Locomotive run information (e.g. start times, run destinations and activities) is electronically stored in software called TOTools. The latest software development allows TOTools to interpret historical GPS information by combining this data with run information recorded in TOTools and geographic information from a GIS application called MapInfo. As a result, TOTools is capable of summarising run activity details such as run start and finish times and shunt activities with great accuracy. This paper presents 15 reports developed to summarise run activities and speed information. The reports will be of use pre-season to assist in developing the next year's schedule and for determining priorities for investment in the track infrastructure. They will also be of benefit during the season to closely monitor locomotive run performance against the existing schedule.
Resumo:
Available industrial energy meters offer high accuracy and reliability, but are typically expensive and low-bandwidth, making them poorly suited to multi-sensor data acquisition schemes and power quality analysis. An alternative measurement system is proposed in this paper that is highly modular, extensible and compact. To minimise cost, the device makes use of planar coreless PCB transformers to provide galvanic isolation for both power and data. Samples from multiple acquisition devices may be concentrated by a central processor before integration with existing host control systems. This paper focusses on the practical design and implementation of planar coreless PCB transformers to facilitate the module's isolated power, clock and data signal transfer. Calculations necessary to design coreless PCB transformers, and circuits designed for the transformer's practical application in the measurement module are presented. The designed transformer and each application circuit have been experimentally verified, with test data and conclusions made applicable to coreless PCB transformers in general.
Resumo:
Smart Card Automated Fare Collection (AFC) data has been extensively exploited to understand passenger behavior, passenger segment, trip purpose and improve transit planning through spatial travel pattern analysis. The literature has been evolving from simple to more sophisticated methods such as from aggregated to individual travel pattern analysis, and from stop-to-stop to flexible stop aggregation. However, the issue of high computing complexity has limited these methods in practical applications. This paper proposes a new algorithm named Weighted Stop Density Based Scanning Algorithm with Noise (WS-DBSCAN) based on the classical Density Based Scanning Algorithm with Noise (DBSCAN) algorithm to detect and update the daily changes in travel pattern. WS-DBSCAN converts the classical quadratic computation complexity DBSCAN to a problem of sub-quadratic complexity. The numerical experiment using the real AFC data in South East Queensland, Australia shows that the algorithm costs only 0.45% in computation time compared to the classical DBSCAN, but provides the same clustering results.
Resumo:
One of the main challenges in data analytics is that discovering structures and patterns in complex datasets is a computer-intensive task. Recent advances in high-performance computing provide part of the solution. Multicore systems are now more affordable and more accessible. In this paper, we investigate how this can be used to develop more advanced methods for data analytics. We focus on two specific areas: model-driven analysis and data mining using optimisation techniques.
Resumo:
Most real-life data analysis problems are difficult to solve using exact methods, due to the size of the datasets and the nature of the underlying mechanisms of the system under investigation. As datasets grow even larger, finding the balance between the quality of the approximation and the computing time of the heuristic becomes non-trivial. One solution is to consider parallel methods, and to use the increased computational power to perform a deeper exploration of the solution space in a similar time. It is, however, difficult to estimate a priori whether parallelisation will provide the expected improvement. In this paper we consider a well-known method, genetic algorithms, and evaluate on two distinct problem types the behaviour of the classic and parallel implementations.
Resumo:
This paper addresses the development of trust in the use of Open Data through incorporation of appropriate authentication and integrity parameters for use by end user Open Data application developers in an architecture for trustworthy Open Data Services. The advantages of this architecture scheme is that it is far more scalable, not another certificate-based hierarchy that has problems with certificate revocation management. With the use of a Public File, if the key is compromised: it is a simple matter of the single responsible entity replacing the key pair with a new one and re-performing the data file signing process. Under this proposed architecture, the the Open Data environment does not interfere with the internal security schemes that might be employed by the entity. However, this architecture incorporates, when needed, parameters from the entity, e.g. person who authorized publishing as Open Data, at the time that datasets are created/added.
Resumo:
Honig and Samuelsson (2014) and Delmar (2015) recently had an exchange in this journal related to a replication-and-extension attempt of two papers which originally arrived at different conclusions based on the same data set. This commentary provides further clarification on the issues and links the debate to broader issues scholarly culture and practices in entrepreneurship research.
Resumo:
Do the political values of the general public form a coherent system? What might be the source of coherence? We view political values as expressions, in the political domain, of more basic personal values. Basic personal values (e.g., security, achievement, benevolence, hedonism) are organized on a circular continuum that reflects their conflicting and compatible motivations. We theorize that this circular motivational structure also gives coherence to political values. We assess this theorizing with data from 15 countries, using eight core political values (e.g., free enterprise, law and order) and ten basic personal values. We specify the underlying basic values expected to promote or oppose each political value. We offer different hypotheses for the 12 non-communist and three post-communist countries studied, where the political context suggests different meanings of a basic or political value. Correlation and regression analyses support almost all hypotheses. Moreover, basic values account for substantially more variance in political values than age, gender, education, and income. Multidimensional scaling analyses demonstrate graphically how the circular motivational continuum of basic personal values structures relations among core political values. This study strengthens the assumption that individual differences in basic personal values play a critical role in political thought.
Resumo:
Objective To synthesise recent research on the use of machine learning approaches to mining textual injury surveillance data. Design Systematic review. Data sources The electronic databases which were searched included PubMed, Cinahl, Medline, Google Scholar, and Proquest. The bibliography of all relevant articles was examined and associated articles were identified using a snowballing technique. Selection criteria For inclusion, articles were required to meet the following criteria: (a) used a health-related database, (b) focused on injury-related cases, AND used machine learning approaches to analyse textual data. Methods The papers identified through the search were screened resulting in 16 papers selected for review. Articles were reviewed to describe the databases and methodology used, the strength and limitations of different techniques, and quality assurance approaches used. Due to heterogeneity between studies meta-analysis was not performed. Results Occupational injuries were the focus of half of the machine learning studies and the most common methods described were Bayesian probability or Bayesian network based methods to either predict injury categories or extract common injury scenarios. Models were evaluated through either comparison with gold standard data or content expert evaluation or statistical measures of quality. Machine learning was found to provide high precision and accuracy when predicting a small number of categories, was valuable for visualisation of injury patterns and prediction of future outcomes. However, difficulties related to generalizability, source data quality, complexity of models and integration of content and technical knowledge were discussed. Conclusions The use of narrative text for injury surveillance has grown in popularity, complexity and quality over recent years. With advances in data mining techniques, increased capacity for analysis of large databases, and involvement of computer scientists in the injury prevention field, along with more comprehensive use and description of quality assurance methods in text mining approaches, it is likely that we will see a continued growth and advancement in knowledge of text mining in the injury field.