976 resultados para movement rules
Resumo:
Background: We report an analysis of a protein network of functionally linked proteins, identified from a phylogenetic statistical analysis of complete eukaryotic genomes. Phylogenetic methods identify pairs of proteins that co-evolve on a phylogenetic tree, and have been shown to have a high probability of correctly identifying known functional links. Results: The eukaryotic correlated evolution network we derive displays the familiar power law scaling of connectivity. We introduce the use of explicit phylogenetic methods to reconstruct the ancestral presence or absence of proteins at the interior nodes of a phylogeny of eukaryote species. We find that the connectivity distribution of proteins at the point they arise on the tree and join the network follows a power law, as does the connectivity distribution of proteins at the time they are lost from the network. Proteins resident in the network acquire connections over time, but we find no evidence that 'preferential attachment' - the phenomenon of newly acquired connections in the network being more likely to be made to proteins with large numbers of connections - influences the network structure. We derive a 'variable rate of attachment' model in which proteins vary in their propensity to form network interactions independently of how many connections they have or of the total number of connections in the network, and show how this model can produce apparent power-law scaling without preferential attachment. Conclusion: A few simple rules can explain the topological structure and evolutionary changes to protein-interaction networks: most change is concentrated in satellite proteins of low connectivity and small phenotypic effect, and proteins differ in their propensity to form attachments. Given these rules of assembly, power law scaled networks naturally emerge from simple principles of selection, yielding protein interaction networks that retain a high-degree of robustness on short time scales and evolvability on longer evolutionary time scales.
Resumo:
Do we view the world differently if it is described to us in figurative rather than literal terms? An answer to this question would reveal something about both the conceptual representation of figurative language and the scope of top-down influences oil scene perception. Previous work has shown that participants will look longer at a path region of a picture when it is described with a type of figurative language called fictive motion (The road goes through the desert) rather than without (The road is in the desert). The current experiment provided evidence that such fictive motion descriptions affect eye movements by evoking mental representations of motion. If participants heard contextual information that would hinder actual motion, it influenced how they viewed a picture when it was described with fictive motion. Inspection times and eye movements scanning along the path increased during fictive motion descriptions when the terrain was first described as difficult (The desert is hilly) as compared to easy (The desert is flat); there were no such effects for descriptions without fictive motion. It is argued that fictive motion evokes a mental simulation of motion that is immediately integrated with visual processing, and hence figurative language can have a distinct effect on perception. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The coding of body part location may depend upon both visual and proprioceptive information, and allows targets to be localized with respect to the body. The present study investigates the interaction between visual and proprioceptive localization systems under conditions of multisensory conflict induced by optokinetic stimulation (OKS). Healthy subjects were asked to estimate the apparent motion speed of a visual target (LED) that could be located either in the extrapersonal space (visual encoding only, V), or at the same distance, but stuck on the subject's right index finger-tip (visual and proprioceptive encoding, V-P). Additionally, the multisensory condition was performed with the index finger kept in position both passively (V-P passive) and actively (V-P active). Results showed that the visual stimulus was always perceived to move, irrespective of its out- or on-the-body location. Moreover, this apparent motion speed varied consistently with the speed of the moving OKS background in all conditions. Surprisingly, no differences were found between V-P active and V-P passive conditions in the speed of apparent motion. The persistence of the visual illusion during the active posture maintenance reveals a novel condition in which vision totally dominates over proprioceptive information, suggesting that the hand-held visual stimulus was perceived as a purely visual, external object despite its contact with the hand.
Resumo:
We undertook this study to explore the degree of impairment in movement skills in children with autistic spectrum disorders (ASD) and a wide IQ range. Movement skills were measured using the Movement Assessment Battery for Children (M-ABC) in a large, well defined, population-derived group of children (n=101: 89 males,12 females; mean age 11y 4mo, SD 10mo; range 10y-14y 3mo) with childhood autism and broader ASD and a wide range of IQ scores. Additionally, we tested whether a parent-completed questionnaire, the Developmental Coordination Disorder Questionnaire (DCDQ), was useful in identifying children who met criteria for movement impairments after assessment (n=97 with complete M-ABCs and DCDQs). Of the children with ASD, 79% had definite movement impairments on the M-ABC; a further 10% had borderline problems. Children with childhood autism were more impaired than children with broader ASD, and children with an IQ less than 70 were more impaired than those with IQ more than 70. This is consistent with the view that movement impairments may arise from a more severe neurological impairment that also contributes to intellectual disability and more severe autism. Movement impairment was not associated with everyday adaptive behaviour once the effect of IQ was controlled for. The DCDQ performed moderately well as a screen for possible motor difficulties. Movement impairments are common in children with ASD. Systematic assessment of movement abilities should be considered a routine investigation.
Resumo:
Identifying a stimulus as the target for a goal-directed movement involves inhibiting competing responses. Separable inhibitory interconnections bias local competition to ensure only one stimulus is selected and to alter movement initiation. Behavioural evidence of these inhibitory processes comes from the effects of distracters on oculomotor landing positions and saccade latencies. Here, we investigate the relationship between these two sources of inhibition. Targets were presented with or without close and remote distracters. In separate experiments the possible position and identity of the target and distracters were manipulated. In all cases saccade landing position was found to be less affected by the presence of the close distracter when remote distracters were also present. The involuntary increase in the latency of saccade initiation caused by the presence of the remote distracters alters the state of competitive processes involved in selecting the saccade target thus changing its landing position.
Resumo:
Reading difficulties (RD) and movement difficulties (MD) co-occur more often in clinical populations than expected for independent disorders. In this study, we investigated the pattern of association between attentional processes, RD and MD in a population of 9 year old school children. Children were screened to identify index groups with RD, MD or both, plus a control group. These groups were then tested on a battery of cognitive attention assessments (TEA-Ch). Results confirmed that the occurrence of RD and MD was greater than would be predicted for independent disorders. Additionally, children with MD, whether or not combined with RD, had poor performance on all attention measures when compared with typically developing children. Children with RD only, were no poorer on measures of attention than typical children. The results are discussed with respect to approaches proposed to account for the co-occurrence of disorders.
Resumo:
We examined whether it is possible to identify the emotional content of behaviour from point-light displays where pairs of actors are engaged in interpersonal communication. These actors displayed a series of emotions, which included sadness, anger, joy, disgust, fear, and romantic love. In experiment 1, subjects viewed brief clips of these point-light displays presented the right way up and upside down. In experiment 2, the importance of the interaction between the two figures in the recognition of emotion was examined. Subjects were shown upright versions of (i) the original pairs (dyads), (ii) a single actor (monad), and (iii) a dyad comprising a single actor and his/her mirror image (reflected dyad). In each experiment, the subjects rated the emotional content of the displays by moving a slider along a horizontal scale. All of the emotions received a rating for every clip. In experiment 1, when the displays were upright, the correct emotions were identified in each case except disgust; but, when the displays were inverted, performance was significantly diminished for some ernotions. In experiment 2, the recognition of love and joy was impaired by the absence of the acting partner, and the recognition of sadness, joy, and fear was impaired in the non-veridical (mirror image) displays. These findings both support and extend previous research by showing that biological motion is sufficient for the perception of emotion, although inversion affects performance. Moreover, emotion perception from biological motion can be affected by the veridical or non-veridical social context within the displays.
Resumo:
The present study examined the effects of a pre-movement delay on the kinematics of prehension in middle childhood. Twenty-five children between the ages of 5 and 11 years made visually open-loop reaches to two different sized objects at two different distances along the midline. Reaches took place either (i) immediately, or (ii) 2 s after the occlusion of the stimulus. In all age groups, reaches following the pre-movement delay were characterised by longer movement durations, lower peak velocities, larger peak grip apertures and longer time spent in the final slow phase of the movement. This pattern of results suggests that the representations that control the transport and grasp component are affected similarly by delay, and is consistent with the results previously reported for adults. Such representations therefore appear to develop before the age of 5. (C) 2004 Elsevier B.V. All rights reserved.