919 resultados para mixtures
Resumo:
Coarse BO2·xH2O (2 < x < 80) gels, free of anion contaminants react with A(OH)2 under refluxing conditions at 70�100°C giving rise to crystallites of single phased, nanometer size powders of ABO3 perovskites (A = Ba, Sr, Ca, Mg, Pb; B = Zr, Ti, Sn). Solid solutions of perovskites could be prepared from compositionally modified gels or mixtures of A(OH)2. Donor doped perovskites could also be prepared from the same method so that the products after processing are often semiconducting. Faster interfacial diffusion of A2+ ions into the gel generates the crystalline regions whose composition is controllable by the A/B ratio as well as the A(OH)2 concentration.
Resumo:
The presence of allophane minerals imparts special engineering features to the volcanic ash soils. This study examines the reasons for the allophanic soils exhibiting unusual shear strength properties in comparison to sedimentary clays. The theories of residual shear strength developed for natural soils and artificial soil mixtures and the unusual surface charge properties of the allophane particle are invoked to explain the high shear strength values of these residual soils. The lack of any reasonable correlation between phi' (effective stress-strength parameter) and plasticity index values for allophanic soils is explained on the basis of the unusual structure of the allophane particle. The reasons as to why natural soil slopes in allophanic soil areas (example, Dominica, West Indies) are stable at much steeper angles than natural slopes in sedimentary clay deposits (London clay areas) are explained in light of the hypothesis developed in this study.
Resumo:
Nanoparticles of Ag-Pd and Gu-Pd alloys with diameters in the 5-40 nm range have been prepared over the entire range of compositions, by employing the heterogeneous reaction of dry methanol or ethanol with intimate mixtures of AgNO3+PdOx and CuOx+PdOx, respectively. The nanoscale alloys have been characterized by energy-dispersive Xray (EDX) analysis, transmission electron microscopy (TEM) and X-ray diffraction (XRD). All the alloy particles possess the fee structure and can be obtained in bulk quantities.
Resumo:
An account is given of the research that has been carried out on mechanical alloying/milling (MA/MM) during the past 25 years. Mechanical alloying, a high energy ball milling process, has established itself as a viable solid state processing route for the synthesis of a variety of equilibrium and non-equilibrium phases and phase mixtures. The process was initially invented for the production of oxide dispersion strengthened (ODS) Ni-base superalloys and later extended to other ODS alloys. The success of MA in producing ODS alloys with better high temperature capabilities in comparison with other processing routes is highlighted. Mechanical alloying has also been successfully used for extending terminal solid solubilities in many commercially important metallic systems. Many high melting intermetallics that are difficult to prepare by conventional processing techniques could be easily synthesised with homogeneous structure and composition by MA. It has also, over the years, proved itself to be superior to rapid solidification processing as a non-equilibrium processing tool. The considerable literature on the synthesis of amorphous, quasicrystalline, and nanocrystalline materials by MA is critically reviewed. The possibility of achieving solid solubility in liquid immiscible systems has made MA a unique process. Reactive milling has opened new avenues for the solid state metallothermic reduction and for the synthesis of nanocrystalline intermetallics and intermetallic matrix composites. Despite numerous efforts, understanding of the process of MA, being far from equilibrium, is far from complete, leaving large scope for further research in this exciting field.
Resumo:
The standard Gibbs energies of formation of lanthanum orthoferrite (LaFeO3-delta) and hexaferrite (LaFe12O19)were determined using solid-state electrochemical cells incorporating yttria-stabilized zirconia as the electrolyte and pure oxygen gas at ambient pressure as the reference electrode. From emf of the solid-state cell, the Gibbs energy of formation of nonstoichiometric orthoferrite (LaFeO3-delta) is obtained. To derive values for the stoichiometric phase, variation of the oxygen nonstoichiometric parameter with oxygen partial pressure was measured using thermogravimetry under controlled gas mixtures. The results obtained for LaFeO3 and LaFe12O19 can be summarized by the following equations, which represent the formation of ternary oxides from their component binary oxides: 1/2 La2O3 + 1/2 Fe2O3 -> LaFeO3: Delta G degrees (LaFeO3) (+/- 450) (J mol(-1)) = -62920 - 2.12T (K), and 1/2 La2O3 + 9/2Fe(2)O(3) + Fe3O4 -> LaFe12O19; Delta G degrees (LaFe12O19) (+/- 200) (J mol(-1)) = -103900 + 21.25T (K). These data are discussed critically in comparison with thermodynamic values reported in the literature from a variety of measurements. The values obtained in this study are consistent with calorimetric entropy and enthalpy of formation of the perovskite phase and with some of the Gibbs energy measurements reported in the literature. For the lanthanum hexaferrite (LaFe12O19) there are no prior thermodynamic measurements for comparison. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
Earlier work has reported the existence of a diffusion anomaly in porous solids at dilute sorbate concentrations. In this work we have carried out molecular dynamics simulations at higher sorbate concetrations. Results indicate the persistence of a diffusion anomaly even at significantly higher sorbate concentrations, which means that this anomaly can be used for separation of mixtures under conditions prevailing in industries.
Resumo:
Controlled pyrolysis of Al(OBus)(3), Zr(OPrn)(4) and their mixtures in ethyl acetate induced using microwaves of 2.45 GHz frequency has been carried out. Microwave irradiation yields second-stage precursors for the preparation of respective oxides and their composites. It is observed that the microwave irradiation has a directive influence on the morphology of the ultimate oxide products. Al2O3, ZrO2 and the two composites 90% Al2O3-10% ZrO2 and 90% ZrO2-10% Al2O3 are also found to be sintered to very high densities within 35 min of microwave irradiation by the use of beta-SiC as a secondary susceptor.
Resumo:
NMR spectra of liquid crystalline phases and the molecules dissolved therein, spinning at and near the magic angle provide information on the director dynamics and the order parameter. The studies on the dynamics of the liquid crystal director for sample spinning near magic angle in mesophases with positive and negative diamagnetic susceptibility anisotropies (Delta chi) and their mixtures with near-zero macroscopic diamagnetic susceptibility anisotropies have been reported. In systems with weakly positive Delta chi, the director has been observed to switch from an orientation parallel to the spinning axis at low rotational speeds to one perpendicular to the spinning axis at high rotational speeds, when the angle theta, the axis of rotation makes with the magnetic field is smaller than the magic angle theta(m). For systems with a small negative Delta chi, similar director behaviour has been observed for theta greater than theta(m). At magic angle, the spectra under slow spinning speeds exhibit a centre band and side bands at integral values of the spinning speeds. The intensities of the spinning side bands have been shown to contain information on the sign and the magnitude of the order parameter(s). The results are discussed with illustrative examples. Results on the orientation of the chemical shielding tensor obtained from a combination of the NMR studies in the solid and the liquid crystalline states, have been described.
Resumo:
Measurements of small-angle neutron scattering (SANS) cross sections from different mixed micelles composed of CTAB and Br-, n-C16H33N+Me2-(CH2)(m)N+Me2-n-C16H33, Br- (16-m-16, 2Br(-), where m = 3, 5, and 10), in aqueous media (D2O) are reported. The data have been analyzed using the Hayter and Penfold model for macroion solution to compute the interparticle structure factor S(Q) taking into account the screened Coulomb interactions between the micelles. The aggregate composition matches with that predicted from an ideal mixing model. The SANS analysis further indicates that the extent of aggregate growth and the Variations of shapes of the mixed micelles could be modulated by the amount of dimeric surfactant present in these mixtures. With the spacer chain length m less than or equal to 4 in the dimeric surfactant, the propensity of micellar growth is particularly pronounced. The effect of the variation of the temperature for the mixed micellar system (23.1 mol % of 16-3-16, 2Br(-)) was also examined. The systemic microviscosities that the mixed micellar aggregates offer to a solubilized, extrinsic fluorescence probe, 1,6-diphenyl-1,3,5-hexatriene, were determined. The variation of the microviscosities of the mixed micelles as a function of percentages of the dimeric surfactants could be explained in terms of conformational variations and progressive looping of the spacer chain of dimeric surfactants in mixed micellar aggregates with increasing m values.
Resumo:
We show analytically that in dilute solutions of high molecular weight polymers, a collapse transition of the chain can be induced by proximity to the critical point of the solvent. The transition is driven by the fluctuations in the medium, which lead to an effective attractive interaction of long range between different parts of the polymer. At the critical point itself, however, the chain adopts the same average conformations that characterize its size in the off-critical limit. In other words, on approach to the critical point, the polymer is found first to contract and collapse, and then subsequently to return to its original dimensions. This behavior has recently been observed in simulations of polymer-solvent mixtures near the lower critical solution temperature of the system, and it is also known to be characteristic of solutions of polymers in bicomponent solvent mixtures near the critical consolute point of the two solvents. (C) 1999 American Institute of Physics. [S0021-9606(99)50431-5].
Resumo:
Strains of Bacillus polymyxa, preadapted and grown in the presence of corundum, were found to be capable of the efficient separation of hematite from alumina. Results of rests peformed using binary hematite-corundum and ternary hematite-quartz-corundum mixtures in the presence of cells and metabolic products separated from the adapted bacterial culture indicated that more than 99% of the hematite could he efficiently separated through selective flocculation after desliming. It was found that alumina-specific bioproteins and other nonproteinaceous compounds were secreted by bacterial cells after adaptation to the mineral. The utility of this bioprocessing is demonstrated in the removal of iron from bauxite ores through selective flocculation in the presence of the adapted bacteria.
Resumo:
The alkoxy species produced by the interaction of alcohols with Zn surfaces undergoes C-O bond scission at 150 K giving hydrocarbon species, but this transformation occurs even at 80 K when alcohol-oxygen mixtures are coadsorbed, due to the oxygen transients.
Resumo:
Twelve novel cationic cholesterol derivatives with different linkage types between the cationic headgroup and the cholesteryl backbone have been developed. These have been tested for their efficacies as gene transfer agents as mixtures with dioleoyl phosphatidylethanolamine (DOPE). A pronounced improvement in transfection efficiency was observed when the cationic center was linked to the steroid backbone using an ether type bond. Among these, cholest-5-en-3b-oxyethane-N, N,N-trimethylammonium bromide (2a) and cholest-5-en-3b-oxyethane-N, N-dimethyl-N-2-hydroxyethylammonium bromide (3d) showed transfection efficiencies considerably greater than commercially available reagents such as Lipofectin or Lipofectamine. To achieve transfection, 3d did not require DOPE. Increasing hydration at the headgroup level for both ester- and ether-linked amphiphiles resulted in progressive loss of transfection efficiency. Transfection efficiency was also greatly reduced when a 'disorder'-inducing chain like an oleyl (cis-9-octadecenyl) segment was added to these cholesteryl amphiphiles. Importantly, the transfection ability of 2a with DOPE in the presence of serum was significantly greater than for a commercially available reagent, Lipofectamine. This suggests that these novel cholesterol-based amphiphiles might prove promising in applications involving liposome-mediated gene transfection. This investigation demonstrates the importance of structural features at the molecular level for the design of cholesterol-based gene delivery reagents that would aid the development of newer, more efficient formulations based on this class of molecules.
Resumo:
In situ formations of Al2O3 + ZrO2 + SiCW ternary composite powders have been obtained by carbothermal reduction of a mixture of Sillimanite. Kaolin and Zircon using two different carbon sources. Products formed were mixtures of alumina and zirconia along with silicon carbide in the form of whiskers. The effects of composition of the reactants, the role of fineness of the starting precursors and the nature of the carbon Source on the final product powder obtained are presented. XRD and SEM analyses indicate complete reaction of the precursors to yield Al2O3 + ZrO2 + SiCW as product powders, with the SiC having whisker morphology. It is also seen that zirconia could be stabilised to some extent in the tetragonal form without any stabilising agent by tailoring the starting materials and their composition. (C) 2002 Published by Elsevier Science B.V.
Resumo:
A spectrally resolved discrete-ordinates radiative transfer model is used to calculate the change in downwelling surface and top-of-the-atmosphere (TOA) outgoing longwave (3.9-500 mum) radiative fluxes induced by tropospheric aerosols of the type observed over the Indian Ocean during the Indian Ocean Experiment (INDOEX). Both external and internal aerosol mixtures were considered. Throughout the longwave, the aerosol volume extinction depends more strongly on relative humidity than in most of the shortwave (0.28-3.9 mum), implying that particle growth factors and realistic relative humidity profiles must be taken into account when modeling the longwave radiative effects of aerosols. A typical boundary layer aerosol loading, with a 500-nm optical depth of 0.3, will increase the downwelling longwave flux at the surface by 7.7 W m(-2) over the clean air case while decreasing the outgoing longwave radiation by 1.3 W m(-2). A more vertically extended aerosol loading, exhibiting a high opacity plume between 2 and 3 km above the surface and having a typical 500-nm optical depth of 0.7, will increase the downwelling longwave flux at the surface by 11.2 W m(-2) over the clean air case while decreasing the outgoing longwave radiation by 2.7 W m(-2). For a vertically extended aerosol profile, approximately 30% of the TOA radiative forcing comes from sea salt and approximately 60% of the forcing comes from the combination of sea salt and dust. The remaining forcing is from anthropogenic constituents. These results are for the external mixture. For an internal mixture, TOA longwave forcings can be up to a factor of two larger. Therefore, to complete our understanding of this region's longwave aerosol radiative properties, more detailed information is needed about aerosol mixing states. These longwave radiative effects partially offset the large shortwave aerosol radiative forcing and should be included in regional and global climate modeling simulations.