927 resultados para missing data recovery
Resumo:
P>The determination of normal parameters is an important procedure in the evaluation of the stomatognathic system. We used the surface electromyography standardization protocol described by Ferrario et al. (J Oral Rehabil. 2000;27:33-40, 2006;33:341) to determine reference values of the electromyographic standardized indices for the assessment of muscular symmetry (left and right side, percentage overlapping coefficient, POC), potential lateral displacing components (unbalanced contractile activities of contralateral masseter and temporalis muscles, TC), relative activity (most prevalent pair of masticatory muscles, ATTIV) and total activity (integrated areas of the electromyographic potentials over time, IMPACT) in healthy Brazilian young adults, and the relevant data reproducibility. Electromyography of the right and left masseter and temporalis muscles was performed during maximum teeth clenching in 20 healthy subjects (10 women and 10 men, mean age 23 years, s.d. 3), free from periodontal problems, temporomandibular disorders, oro-facial myofunctional disorder, and with full permanent dentition (28 teeth at least). Data reproducibility was computed for 75% of the sample. The values obtained were POC Temporal (88 center dot 11 +/- 1 center dot 45%), POC masseter (87 center dot 11 +/- 1 center dot 60%), TC (8 center dot 79 +/- 1 center dot 20%), ATTIV (-0 center dot 33 +/- 9 center dot 65%) and IMPACT (110 center dot 40 +/- 23 center dot 69 mu V/mu V center dot s %). There were no statistical differences between test and retest values (P > 0 center dot 05). The Technical Errors of Measurement (TEM) for 50% of subjects assessed during the same session were 1 center dot 5, 1 center dot 39, 1 center dot 06, 3 center dot 83 and 10 center dot 04. For 25% of the subjects assessed after a 6-month interval, the TEM were 0 center dot 80, 1 center dot 03, 0 center dot 73, 12 center dot 70 and 19 center dot 10. For all indices, there was good reproducibility. These electromyographic indices could be used in the assessment of patients with stomatognathic dysfunction.
Resumo:
Systemic or intra-striatal acute administration of nitric oxide synthase (NOS) inhibitors causes catalepsy in rodents. This effect disappears after sub-chronic treatment. The aim of the present study was to investigate if this tolerance is related to changes in the expression of NOS or dopamine-2 (D(2)) receptor or to a recovery of NOS activity. Male albino Swiss mice (25-30 g) received single or sub-chronic (once a day for 4 days) i.p. injections of saline or L-nitro-arginine (L-NOARG, 40 mg/kg), a non-selective inhibitor of neuronal nitric oxide synthase (nNOS). Twenty-four hours after the last injection, the animals were killed and their brains were removed for immunohistochemistry assay to detect the presence of nNOS or for `in-situ` hybridisation study using (35)S-labeled oligonucleotide probe complementary to D(2) receptor mRNA. The results were analysed by computerised densitometry. Independent groups of animals received the same treatment, but were submitted to the catalepsy test and had their brain removed to measure nitrite and nitrate (NOx) concentrations in the striatum. Acute administration of L-NOARG caused catalepsy that disappeared after sub-chronic treatment. The levels of NOx were significantly reduced after acute L-NOARG treatment. The decrease in NOx after drug injection suffered a partial tolerance after sub-chronic treatment. The catalepsy time after acute or sub-chronic treatment with L-NOARG was negatively (r = -0.717) correlated with NOx levels. Animals that received repeated L-NOARG injections also showed an increase in the number of nNOS-positive neurons in the striatum. No change in D(2) receptor mRNA expression was found in the dorsal striatum, nucleus accumbens and substantia nigra. Together, these results suggest that tolerance to L-NOARG cataleptic effects do not depend on changes in D(2) receptors. They may depend, however, on plastic changes in nNOS neurons resulting in partial recovery of NO formation in the striatum.
Resumo:
Background: Pain reactivity may reflect underlying mechanisms of constitutional aspects of temperament. Aim: To examine whether the neonatal biobehavioral reactivity and recovery responses from pain and distress, as well as the gestational age, the illness severity and the amount of painful procedures undergone the Neonatal Intensive Care Unit (NICU) stay, predict temperament later in toddlerhood, in vulnerable children born preterm. Study design: Prospective-longitudinal study. Subjects: Twenty-six preterm and very low birth weight infants followed from birth to toddlerhood. Outcome measures: Illness severity was assessed with the Clinical Risk Index for Babies (CRIB) score. The medical charts were reviewed prospectively for obtaining the amount of pain exposure in NICU. For assessing the behavioral and cardiac reactivity and recovery from pain and distress, the neonates were evaluated during routine blood collection in the NICU in the first 10 days of life. Pain and distress reactivity and recovery was measured using the Neonatal Facial Coding System score, the duration of crying. and the magnitude of average heart rate. At toddlerhood, mothers answered the Early Childhood Behavior Questionnaire. Results: Higher biobehavioral reactivity to pain and distress predicted higher temperamental Negative Affect, above and beyond gestational age, illness severity and amount of pain exposure in NICU. However, we did not find a predictive relation between gestational age, CRIB score and number of painful procedures undergone NICU and toddler`s temperament. Conclusions: The findings highlight the relevance of the neonatal individual characteristics of reactivity for identifying more vulnerable infants for future problems in biobehavioral regulation. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The aim of the present study was to examine the efficacy and potential side effects of repeated doses of oral sucrose for pain relief during procedures in NICU. Thirty-three preterm neonates were randomly allocated in blind fashion into two groups, the sucrose group (SG = 17) and the control group (CG = 16). The responses of neonates to pain and distress were assessed during blood collection on four consecutive assessment (ass.) days. For the first assessment, the neonates did not receive any solution before the blood collection procedure. During the next three days, the SG received oral sucrose (25%; 0.5 ml/kg) and the CG received sterile water, 2 min before each minor acute painful procedure. The neonates were evaluated during blood collection each morning. The assessment was divided into five phases: Baseline (BL), Antisepsis (A), Puncture (P), Dressing (D), and Recovery (R). The neonates` facial activity (NFCS), behavioral state, and heart rate were evaluated. The data analysis used cut-off scores for painful and distressful responses. No side effects of using sucrose were detected. There were significantly fewer SG neonates with facial actions signaling pain than CG neonates in P (ass.2) and in A (ass.3). We found significantly fewer SG neonates in the awake state than CG neonates in P (ass.2 and ass.4). There were significantly fewer SG neonates crying during A (ass.2), P (ass.2 and ass.4), and D (ass.3). There was no statistical difference between-groups for physiological response. The efficacy of sucrose was maintained for pain relief in preterm neonates with no side effects. (C) 2007 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Resumo:
Background and Purpose-Functional MRI is a powerful tool to investigate recovery of brain function in patients with stroke. An inherent assumption in functional MRI data analysis is that the blood oxygenation level-dependent (BOLD) signal is stable over the course of the examination. In this study, we evaluated the validity of such assumption in patients with chronic stroke. Methods-Fifteen patients performed a simple motor task with repeated epochs using the paretic and the unaffected hand in separate runs. The corresponding BOLD signal time courses were extracted from the primary and supplementary motor areas of both hemispheres. Statistical maps were obtained by the conventional General Linear Model and by a parametric General Linear Model. Results-Stable BOLD amplitude was observed when the task was executed with the unaffected hand. Conversely, the BOLD signal amplitude in both primary and supplementary motor areas was progressively attenuated in every patient when the task was executed with the paretic hand. The conventional General Linear Model analysis failed to detect brain activation during movement of the paretic hand. However, the proposed parametric General Linear Model corrected the misdetection problem and showed robust activation in both primary and supplementary motor areas. Conclusions-The use of data analysis tools that are built on the premise of a stable BOLD signal may lead to misdetection of functional regions and underestimation of brain activity in patients with stroke. The present data urge the use of caution when relying on the BOLD response as a marker of brain reorganization in patients with stroke. (Stroke. 2010; 41:1921-1926.)
Resumo:
In 2007 Associate Professor Jay Hall retires from the University of Queensland after more than 30 years of service to the Australian archaeological community. Celebrated as a gifted teacher and a pioneer of Queensland archaeology, Jay leaves a rich legacy of scholarship and achievement across a wide range of archaeological endeavours. An Archæological Life brings together past and present students, colleagues and friends to celebrate Jay’s contributions, influences and interests.
Resumo:
Objective To compare the cardiorespiratory, anesthetic-sparing effects and quality of anesthetic recovery after epidural and constant rate intravenous (IV) infusion of dexmedetomidine (DEX) in cats given a low dose of epidural lidocaine under propofol-isoflurane anesthesia and submitted to elective ovariohysterectomy. Study design Randomized, blinded clinical trial. Animals Twenty-one adult female cats ( mean body weight: 3.1 +/- 0.4 kg). Methods Cats received DEX (4 mu g kg(-1), IM). Fifteen minutes later, anesthesia was induced with propofol and maintained with isoflurane. Cats were divided into three groups. In GI cats received epidural lidocaine (1 mg kg(-1), n = 7), in GII cats were given epidural lidocaine (1 mg kg(-1)) + DEX (4 mu g kg(-1), n = 7), and in GIII cats were given epidural lidocaine (1 mg kg(-1)) + IV constant rate infusion (CRI) of DEX (0.25 mu g kg(-1) minute(-1), n = 7). Variables evaluated included heart rate (HR), respiratory rate (f(R)), systemic arterial pressures, rectal temperature (RT), end-tidal CO(2), end-tidal isoflurane concentration (E`ISO), arterial blood gases, and muscle tone. Anesthetic recovery was compared among groups by evaluation of times to recovery, HR, f(R), RT, and degree of analgesia. A paired t-test was used to evaluate pre-medication variables and blood gases within groups. ANOVA was used to compare parametric data, whereas Friedman test was used to compare muscle relaxation. Results Epidural and CRI of DEX reduced HR during anesthesia maintenance. Mean +/- SD E/ISO ranged from 0.86 +/- 0.28% to 1.91 +/- 0.63% in GI, from 0.70 +/- 0.12% to 0.97 +/- 0.20% in GII, and from 0.69 +/- 0.12% to 1.17 +/- 0.25% in GIII. Cats in GII and GIII had longer recovery periods than in GI. Conclusions and clinical relevance Epidural and CRI of DEX significantly decreased isoflurane consumption and resulted in recovery of better quality and longer duration, despite bradycardia, without changes in systemic blood pressure.