931 resultados para microgravity fluid physics
Resumo:
Although it plays a key role in the theory of stratified turbulence, the concept of available potential energy (APE) dissipation has remained until now a rather mysterious quantity, owing to the lack of rigorous result about its irreversible character or energy conversion type. Here, we show by using rigorous energetics considerations rooted in the analysis of the Navier-Stokes for a fully compressible fluid with a nonlinear equation of state that the APE dissipation is an irreversible energy conversion that dissipates kinetic energy into internal energy, exactly as viscous dissipation. These results are established by showing that APE dissipation contributes to the irreversible production of entropy, and by showing that it is a part of the work of expansion/contraction. Our results provide a new interpretation of the entropy budget, that leads to a new exact definition of turbulent effective diffusivity, which generalizes the Osborn-Cox model, as well as a rigorous decomposition of the work of expansion/contraction into reversible and irreversible components. In the context of turbulent mixing associated with parallel shear flow instability, our results suggests that there is no irreversible transfer of horizontal momentum into vertical momentum, as seems to be required when compressible effects are neglected, with potential consequences for the parameterisations of momentum dissipation in the coarse-grained Navier-Stokes equations.
Resumo:
In this paper, the concept of available potential energy (APE) density is extended to a multicomponent Boussinesq fluid with a nonlinear equation of state. As shown by previous studies, the APE density is naturally interpreted as the work against buoyancy forces that a parcel needs to perform to move from a notional reference position at which its buoyancy vanishes to its actual position; because buoyancy can be defined relative to an arbitrary reference state, so can APE density. The concept of APE density is therefore best viewed as defining a class of locally defined energy quantities, each tied to a different reference state, rather than as a single energy variable. An important result, for which a new proof is given, is that the volume integrated APE density always exceeds Lorenz’s globally defined APE, except when the reference state coincides with Lorenz’s adiabatically re-arranged reference state of minimum potential energy. A parcel reference position is systematically defined as a level of neutral buoyancy (LNB): depending on the nature of the fluid and on how the reference state is defined, a parcel may have one, none, or multiple LNB within the fluid. Multiple LNB are only possible for a multicomponent fluid whose density depends on pressure. When no LNB exists within the fluid, a parcel reference position is assigned at the minimum or maximum geopotential height. The class of APE densities thus defined admits local and global balance equations, which all exhibit a conversion with kinetic energy, a production term by boundary buoyancy fluxes, and a dissipation term by internal diffusive effects. Different reference states alter the partition between APE production and dissipation, but neither affect the net conversion between kinetic energy and APE, nor the difference between APE production and dissipation. We argue that the possibility of constructing APE-like budgets based on reference states other than Lorenz’s reference state is more important than has been previously assumed, and we illustrate the feasibility of doing so in the context of an idealised and realistic oceanic example, using as reference states one with constant density and another one defined as the horizontal mean density field; in the latter case, the resulting APE density is found to be a reasonable approximation of the APE density constructed from Lorenz’s reference state, while being computationally cheaper.
Resumo:
A potential problem with Ensemble Kalman Filter is the implicit Gaussian assumption at analysis times. Here we explore the performance of a recently proposed fully nonlinear particle filter on a high-dimensional but simplified ocean model, in which the Gaussian assumption is not made. The model simulates the evolution of the vorticity field in time, described by the barotropic vorticity equation, in a highly nonlinear flow regime. While common knowledge is that particle filters are inefficient and need large numbers of model runs to avoid degeneracy, the newly developed particle filter needs only of the order of 10-100 particles on large scale problems. The crucial new ingredient is that the proposal density cannot only be used to ensure all particles end up in high-probability regions of state space as defined by the observations, but also to ensure that most of the particles have similar weights. Using identical twin experiments we found that the ensemble mean follows the truth reliably, and the difference from the truth is captured by the ensemble spread. A rank histogram is used to show that the truth run is indistinguishable from any of the particles, showing statistical consistency of the method.
Resumo:
The drag and momentum fluxes produced by gravity waves generated in flow over orography are reviewed, focusing on adiabatic conditions without phase transitions or radiation effects, and steady mean incoming flow. The orographic gravity wave drag is first introduced in its simplest possible form, for inviscid, linearized, non-rotating flow with the Boussinesq and hydrostatic approximations, and constant wind and static stability. Subsequently, the contributions made by previous authors (primarily using theory and numerical simulations) to elucidate how the drag is affected by additional physical processes are surveyed. These include the effect of orography anisotropy, vertical wind shear, total and partial critical levels, vertical wave reflection and resonance, non-hydrostatic effects and trapped lee waves, rotation and nonlinearity. Frictional and boundary layer effects are also briefly mentioned. A better understanding of all of these aspects is important for guiding the improvement of drag parametrization schemes.
Resumo:
The (poly)phenols in ileal fluid after ingestion of raspberries were analysed by targeted and non-targeted LC-MSn approaches. Targeted approaches identified major anthocyanin and ellagitannin components at varying recoveries and with considerable inter-individual variation. Non-targeted LC-MSn analysis using an Orbitrap mass spectrometer gave exact mass MS data which was sifted using a software program to select peaks that changed significantly after supplementation. This method confirmed the recovery of the targeted components but also identified novel raspberry-specific metabolites. Some components (including ellagitannin and previously unidentified proanthocyanidin derivatives) may have arisen from raspberry seeds that survived intact in ileal samples. Other components include potential breakdown products of anthocyanins, unidentified components and phenolic metabolites formed in either the gut epithelia or after absorption into the circulatory system and efflux back into the gut lumen. The possible physiological roles of the ileal metabolites in the large bowel are discussed.
Resumo:
Solution calorimetry offers a reproducible technique for measuring the enthalpy of solution (ΔsolH) of a solute dissolving into a solvent. The ΔsolH of two solutes, propranolol HCl and mannitol were determined in simulated intestinal fluid (SIF) solutions designed to model the fed and fasted states within the gut, and in Hanks’ balanced salt solution (HBSS) of varying pH. The bile salt and lipid within the SIF solutions formed mixed micelles. Both solutes exhibited endothermic reactions in all solvents. The ΔsolH for propranolol HCl in the SIF solutions differed from those in the HBSS and was lower in the fed state than the fasted state SIF solution, revealing an interaction between propranolol and the micellar phase in both SIF solutions. In contrast, for mannitol the ΔsolH was constant in all solutions indicating minimal interaction between mannitol and the micellar phases of the SIF solutions. In this study, solution calorimetry proved to be a simple method for measuring the enthalpy associated with the dissolution of model drugs in complex biological media such as SIF solutions. In addition, the derived power–time curves allowed the time taken for the powdered solutes to form solutions to be estimated.
Resumo:
In recent years, computational fluid dynamics (CFD) has been widely used as a method of simulating airflow and addressing indoor environment problems. The complexity of airflows within the indoor environment would make experimental investigation difficult to undertake and also imposes significant challenges on turbulence modelling for flow prediction. This research examines through CFD visualization how air is distributed within a room. Measurements of air temperature and air velocity have been performed at a number of points in an environmental test chamber with a human occupant. To complement the experimental results, CFD simulations were carried out and the results enabled detailed analysis and visualization of spatial distribution of airflow patterns and the effect of different parameters to be predicted. The results demonstrate the complexity of modelling human exhalation within a ventilated enclosure and shed some light into how to achieve more realistic predictions of the airflow within an occupied enclosure.
Resumo:
A lattice Boltzmann model able to simulate viscous fluid systems with elastic and movable boundaries is proposed. By introducing the virtual distribution function at the boundary, the Galilean invariance is recovered for the full system. As examples of application, the how in elastic vessels is simulated with the pressure-radius relationship similar to that of the pulmonary blood vessels. The numerical results for steady how are in good agreement with the analytical prediction, while the simulation results for pulsative how agree with the experimental observation of the aortic flows qualitatively. The approach has potential application in the study of the complex fluid systems such as the suspension system as well as the arterial blood flow.
Resumo:
The REgents PARk and Tower Environmental Experiment (REPARTEE) comprised two campaigns in London in October 2006 and October/November 2007. The experiment design involved measurements at a heavily trafficked roadside site, two urban background sites and an elevated site at 160–190 m above ground on the BT Tower, supplemented in the second campaign by Doppler lidar measurements of atmospheric vertical structure. A wide range of measurements of airborne particle physical metrics and chemical composition were made as well as measurements of a considerable range of gas phase species and the fluxes of both particulate and gas phase substances. Significant findings include (a) demonstration of the evaporation of traffic-generated nanoparticles during both horizontal and vertical atmospheric transport; (b) generation of a large base of information on the fluxes of nanoparticles, accumulation mode particles and specific chemical components of the aerosol and a range of gas phase species, as well as the elucidation of key processes and comparison with emissions inventories; (c) quantification of vertical gradients in selected aerosol and trace gas species which has demonstrated the important role of regional transport in influencing concentrations of sulphate, nitrate and secondary organic compounds within the atmosphere of London; (d) generation of new data on the atmospheric structure and turbulence above London, including the estimation of mixed layer depths; (e) provision of new data on trace gas dispersion in the urban atmosphere through the release of purposeful tracers; (f) the determination of spatial differences in aerosol particle size distributions and their interpretation in terms of sources and physico-chemical transformations; (g) studies of the nocturnal oxidation of nitrogen oxides and of the diurnal behaviour of nitrate aerosol in the urban atmosphere, and (h) new information on the chemical composition and source apportionment of particulate matter size fractions in the atmosphere of London derived both from bulk chemical analysis and aerosol mass spectrometry with two instrument types.
Resumo:
Aimed at reducing deficiencies in representing the Madden-Julian oscillation (MJO) in general circulation models (GCMs), a global model evaluation project on vertical structure and physical processes of the MJO was coordinated. In this paper, results from the climate simulation component of this project are reported. It is shown that the MJO remains a great challenge in these latest generation GCMs. The systematic eastward propagation of the MJO is only well simulated in about one-fourth of the total participating models. The observed vertical westward tilt with altitude of the MJO is well simulated in good MJO models, but not in the poor ones. Damped Kelvin wave responses to the east of convection in the lower troposphere could be responsible for the missing MJO preconditioning process in these poor MJO models. Several process-oriented diagnostics were conducted to discriminate key processes for realistic MJO simulations. While large-scale rainfall partition and low-level mean zonal winds over the Indo-Pacific in a model are not found to be closely associated with its MJO skill, two metrics, including the low-level relative humidity difference between high and low rain events and seasonal mean gross moist stability, exhibit statistically significant correlations with the MJO performance. It is further indicated that increased cloud-radiative feedback tends to be associated with reduced amplitude of intraseasonal variability, which is incompatible with the radiative instability theory previously proposed for the MJO. Results in this study confirm that inclusion of air-sea interaction can lead to significant improvement in simulating the MJO.
Resumo:
Liquid–vapour homogenisation temperatures of fluid inclusions in stalagmites are used for quantitative temperature reconstructions in paleoclimate research. Specifically for this application, we have developed a novel heating/cooling stage that can be operated with large stalagmite sections of up to 17 × 35 mm2 to simplify and improve the chronological reconstruction of paleotemperature time-series. The stage is designed for use of an oil immersion objective and a high-NA condenser front lens to obtain high-resolution images for bubble radius measurements. The temperature accuracy of the stage is better than ± 0.1 °C with a precision (reproducibility) of ± 0.02 °C.
Resumo:
A new online method to analyse water isotopes of speleothem fluid inclusions using a wavelength scanned cavity ring down spectroscopy (WS-CRDS) instrument is presented. This novel technique allows us simultaneously to measure hydrogen and oxygen isotopes for a released aliquot of water. To do so, we designed a new simple line that allows the online water extraction and isotope analysis of speleothem samples. The specificity of the method lies in the fact that fluid inclusions release is made on a standard water background, which mainly improves the δ D robustness. To saturate the line, a peristaltic pump continuously injects standard water into the line that is permanently heated to 140 °C and flushed with dry nitrogen gas. This permits instantaneous and complete vaporisation of the standard water, resulting in an artificial water background with well-known δ D and δ18O values. The speleothem sample is placed in a copper tube, attached to the line, and after system stabilisation it is crushed using a simple hydraulic device to liberate speleothem fluid inclusions water. The released water is carried by the nitrogen/standard water gas stream directly to a Picarro L1102-i for isotope determination. To test the accuracy and reproducibility of the line and to measure standard water during speleothem measurements, a syringe injection unit was added to the line. Peak evaluation is done similarly as in gas chromatography to obtain &delta D; and δ18O isotopic compositions of measured water aliquots. Precision is better than 1.5 ‰ for δ D and 0.4 ‰ for δ18O for water measurements for an extended range (−210 to 0 ‰ for δ D and −27 to 0 ‰ for δ18O) primarily dependent on the amount of water released from speleothem fluid inclusions and secondarily on the isotopic composition of the sample. The results show that WS-CRDS technology is suitable for speleothem fluid inclusion measurements and gives results that are comparable to the isotope ratio mass spectrometry (IRMS) technique.
Resumo:
We present a general approach based on nonequilibrium thermodynamics for bridging the gap between a well-defined microscopic model and the macroscopic rheology of particle-stabilised interfaces. Our approach is illustrated by starting with a microscopic model of hard ellipsoids confined to a planar surface, which is intended to simply represent a particle-stabilised fluid–fluid interface. More complex microscopic models can be readily handled using the methods outlined in this paper. From the aforementioned microscopic starting point, we obtain the macroscopic, constitutive equations using a combination of systematic coarse-graining, computer experiments and Hamiltonian dynamics. Exemplary numerical solutions of the constitutive equations are given for a variety of experimentally relevant flow situations to explore the rheological behaviour of our model. In particular, we calculate the shear and dilatational moduli of the interface over a wide range of surface coverages, ranging from the dilute isotropic regime, to the concentrated nematic regime.