997 resultados para mesoscale atmospheric modeling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work is to study the results of tensile tests for austenitic stainless steel type 304 and make accurate FE-models according to the results of the tests. Tensile tests were made at Central Research Institute of Structural Material, Prometey at Saint Petersburg and Mariyenburg in Russia. The test specimens for the tensile tests were produced at Lappeenranta University of Technology in a Laboratory of Steel Structures. In total 4 different tests were made, two with base material specimens and two with transverse butt weld specimens. Each kind of a specimen was tested at room temperature and at low temperature. By comparing the results of room and low temperature tests of similar test specimen we get to study the results of work hardening that affect the austenitic steels at below room temperature. The produced specimens are to be modeled accurately and then imported for nonlinear FEM- analyzing. Using the data gained from the tensile tests the aim is to get the models work like the specimens did during the tests. By using the analyzed results of the FE-models the aim is to calculate and get the stress-strain curves that correspond to the results acquired from the tensile tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This doctoral thesis describes the development work performed on the leachand purification sections in the electrolytic zinc plant in Kokkola to increase the efficiency in these two stages, and thus the competitiveness of the plant. Since metallic zinc is a typical bulk product, the improvement of the competitiveness of a plant was mostly an issue of decreasing unit costs. The problems in the leaching were low recovery of valuable metals from raw materials, and that the available technology offered complicated and expensive processes to overcome this problem. In the purification, the main problem was consumption of zinc powder - up to four to six times the stoichiometric demand. This reduced the capacity of the plant as this zinc is re-circulated through the electrolysis, which is the absolute bottleneck in a zinc plant. Low selectivity gave low-grade and low-value precipitates for further processing to metallic copper, cadmium, cobalt and nickel. Knowledge of the underlying chemistry was poor and process interruptions causing losses of zinc production were frequent. Studies on leaching comprised the kinetics of ferrite leaching and jarosite precipitation, as well as the stability of jarosite in acidic plant solutions. A breakthrough came with the finding that jarosite could precipitate under conditions where ferrite would leach satisfactorily. Based on this discovery, a one-step process for the treatment of ferrite was developed. In the plant, the new process almost doubled the recovery of zinc from ferrite in the same equipment as the two-step jarosite process was operated in at that time. In a later expansion of the plant, investment savings were substantial compared to other technologies available. In the solution purification, the key finding was that Co, Ni, and Cu formed specific arsenides in the “hot arsenic zinc dust” step. This was utilized for the development of a three-step purification stage based on fluidized bed technology in all three steps, i.e. removal of Cu, Co and Cd. Both precipitation rates and selectivity increased, which strongly decreased the zinc powder consumption through a substantially suppressed hydrogen gas evolution. Better selectivity improved the value of the precipitates: cadmium, which caused environmental problems in the copper smelter, was reduced from 1-3% reported normally down to 0.05 %, and a cobalt cake with 15 % Co was easily produced in laboratory experiments in the cobalt removal. The zinc powder consumption in the plant for a solution containing Cu, Co, Ni and Cd (1000, 25, 30 and 350 mg/l, respectively), was around 1.8 g/l; i.e. only 1.4 times the stoichiometric demand – or, about 60% saving in powder consumption. Two processes for direct leaching of the concentrate under atmospheric conditions were developed, one of which was implemented in the Kokkola zinc plant. Compared to the existing pressure leach technology, savings were obtained mostly in investment. The scientific basis for the most important processes and process improvements is given in the doctoral thesis. This includes mathematical modeling and thermodynamic evaluation of experimental results and hypotheses developed. Five of the processes developed in this research and development program were implemented in the plant and are still operated. Even though these processes were developed with the focus on the plant in Kokkola, they can also be implemented at low cost in most of the zinc plants globally, and have thus a great significance in the development of the electrolytic zinc process in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, liquid-solid flow in industrial scale is modeled using the commercial software of Computational Fluid Dynamics (CFD) ANSYS Fluent 14.5. In literature, there are few studies on liquid-solid flow in industrial scale, but any information about the particular case with modified geometry cannot be found. The aim of this thesis is to describe the strengths and weaknesses of the multiphase models, when a large-scale application is studied within liquid-solid flow, including the boundary-layer characteristics. The results indicate that the selection of the most appropriate multiphase model depends on the flow regime. Thus, careful estimations of the flow regime are recommended to be done before modeling. The computational tool is developed for this purpose during this thesis. The homogeneous multiphase model is valid only for homogeneous suspension, the discrete phase model (DPM) is recommended for homogeneous and heterogeneous suspension where pipe Froude number is greater than 1.0, while the mixture and Eulerian models are able to predict also flow regimes, where pipe Froude number is smaller than 1.0 and particles tend to settle. With increasing material density ratio and decreasing pipe Froude number, the Eulerian model gives the most accurate results, because it does not include simplifications in Navier-Stokes equations like the other models. In addition, the results indicate that the potential location of erosion in the pipe depends on material density ratio. Possible sedimentation of particles can cause erosion and increase pressure drop as well. In the pipe bend, especially secondary flows, perpendicular to the main flow, affect the location of erosion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The power rating of wind turbines is constantly increasing; however, keeping the voltage rating at the low-voltage level results in high kilo-ampere currents. An alternative for increasing the power levels without raising the voltage level is provided by multiphase machines. Multiphase machines are used for instance in ship propulsion systems, aerospace applications, electric vehicles, and in other high-power applications including wind energy conversion systems. A machine model in an appropriate reference frame is required in order to design an efficient control for the electric drive. Modeling of multiphase machines poses a challenge because of the mutual couplings between the phases. Mutual couplings degrade the drive performance unless they are properly considered. In certain multiphase machines there is also a problem of high current harmonics, which are easily generated because of the small current path impedance of the harmonic components. However, multiphase machines provide special characteristics compared with the three-phase counterparts: Multiphase machines have a better fault tolerance, and are thus more robust. In addition, the controlled power can be divided among more inverter legs by increasing the number of phases. Moreover, the torque pulsation can be decreased and the harmonic frequency of the torque ripple increased by an appropriate multiphase configuration. By increasing the number of phases it is also possible to obtain more torque per RMS ampere for the same volume, and thus, increase the power density. In this doctoral thesis, a decoupled d–q model of double-star permanent-magnet (PM) synchronous machines is derived based on the inductance matrix diagonalization. The double-star machine is a special type of multiphase machines. Its armature consists of two three-phase winding sets, which are commonly displaced by 30 electrical degrees. In this study, the displacement angle between the sets is considered a parameter. The diagonalization of the inductance matrix results in a simplified model structure, in which the mutual couplings between the reference frames are eliminated. Moreover, the current harmonics are mapped into a reference frame, in which they can be easily controlled. The work also presents methods to determine the machine inductances by a finite-element analysis and by voltage-source inverters on-site. The derived model is validated by experimental results obtained with an example double-star interior PM (IPM) synchronous machine having the sets displaced by 30 electrical degrees. The derived transformation, and consequently, the decoupled d–q machine model, are shown to model the behavior of an actual machine with an acceptable accuracy. Thus, the proposed model is suitable to be used for the model-based control design of electric drives consisting of double-star IPM synchronous machines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to model light interception and distribution in the mixed canopy of Common cocklebur (Xanthium stramarium) with corn. An experiment was conducted in factorial arrangement on the basis of randomized complete blocks design with three replications in Gonabad in 2006-2007 and 2007-2008 seasons. The factors used in this experiment include corn density of 7.5, 8.5 and 9.5 plants per meter of row and density of Common cocklebur of zero, 2, 4, 6 and 8 plants per meter of row. INTERCOM model was used through replacing parabolic function with triangular function of leaf area density. Vertical distribution of the species' leaf area showed that corn has concentrated the most leaf area in layer of 80 to 100 cm while Common cocklebur has concentrated in 35-50 cm of canopy height. Model sensitivity analysis showed that leaf area index, species' height, height where maximum leaf area is seen (hm), and extinction coefficient have influence on light interception rate of any species. In both species, the distribution density of leaf area at the canopy length fit a triangular function, and the height in which maximum leaf area was observed was changed by change in density. There was a correlation between percentage of the radiation absorbed by the weed and percentage of corn seed yield loss (r² = 0.89). Ideal type of corn was determined until the stage of tasseling in competition with weed. This determination indicates that the corn needs more height and leaf area, as well as less extinction coefficient to successfully fight against the weed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theoretical research of the study focused to business process management and business process modeling, the goal was to found a new business process modeling method for electrical accessories manufacturing enterprise. The focus was to find few options for business process modeling methods where company could have chosen the best one for its needs The study was carried out as a qualitative research with an action study and a case study as the most important ways collect data. In the empirical part of the study examples of company’s processes modeled with the new modeling method and process modeling process are presented. The new way of modeling processes improves especially visual presentation of the processes and improves the understanding how employees should work in the organizational interfaces of the process and in the interfaces between different processes. The results of the study is a new unified way to model company’s processes, which makes it easier to understand and create the process models. This improved readability makes it possible to reduce the costs that were created from the unclear old process models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research objective was to determine the effects of spacing and seeding density of common bean to the period prior to weed interference (PPI) and weed period prior to economic loss (WEEPPEL). The treatments consisted of periods of coexistence between culture and the weeds, with 0 to 10, 0 to 20, 0 to 30, 0 to 40, 0 to 50, 0 to 60, 0 to 70, and 0 to 80 days and a control maintained without weeds. In addition to the periods of coexistence, there were still studies with an inter-row of 0.45 and 0.60 m, 10 and 15 plants m-1. The experimental delineation used was randomized blocks with four repetitions per treatment. The grain productivity of the culture had a reduction of 63, 50, 42 and 57% when the coexistence with the weed plants was during the entire cycle of the culture for a row spacing of 0.45 m and a seeding density of 10 and 15 plants per meter; and a row spacing of 0.60m and a seeding density of 10 and 15 plants per meter, respectively. The PPI occurred in 23, 27, 13, and 19 days after crop emergence and WEEPPEL in 10, 9, 8, and 8 days, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work is mainly focused on the technology of bubbling fluidized bed combustion. Heat transfer and hydrodynamics of the process were examined in the work in detail. Special emphasis was placed on the process of heat exchange in a freeboard zone of bubbling fluidized bed boiler. Operating mode of bubbling fluidized bed boiler depends on many parameters. To assess the influence of some parameters on a temperature regime inside the furnace a simplified method of zonal modeling was used in the work. Thus, effects of bed material fineness, excess air ratio and changes in boiler load were studied. Besides the technology of combustion in bubbling fluidized bed, other common technologies of solid fuels combustion were reviewed. In addition, brief survey of most widely used types of solid fuel was performed in the work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing levels of atmospheric ammonia from anthropogenic sources have become a serious problem for natural vegetation. Short-term effects of different ammoniacal sources on the N metabolism of Tillandsia pohliana, an atmospheric bromeliad, were investigated. One-year-old, aseptically grown plants were transferred to a modified Knudson medium lacking N for three weeks. Plants were subsequently transferred to Knudson media supplemented with 0.5, 1.0, or 1.5 mM of N in the forms of NH3 or NH4+ as the sole N source. The activities of glutamine synthetase (GS) and glutamate dehydrogenase (GDH-NADH) were determined after 40 h. The GS activity was stimulated significantly by increasing the levels of the gaseous form. The GDH-NADH activity increased significantly under increasing N concentrations with NH3, while no significant differences were observed with NH4+ as a N source. These results may reflect a faster NH3 absorption by T. pohliana compared to NH4+ uptake. The increased activity of GDH-NADH in NH3 treatment may play a role in protecting the cells from the toxic effects of increased endogenous level of free ammonium. A raise in the concentration of N, especially in the form of NH3, greatly increased the content of free amino acids and soluble proteins. A possible utilisation of T. pohliana to evaluate the changes of atmospheric gaseous ammonia is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, due to the increasing total construction and transportation cost and difficulties associated with handling massive structural components or assemblies, there has been increasing financial pressure to reduce structural weight. Furthermore, advances in material technology coupled with continuing advances in design tools and techniques have encouraged engineers to vary and combine materials, offering new opportunities to reduce the weight of mechanical structures. These new lower mass systems, however, are more susceptible to inherent imbalances, a weakness that can result in higher shock and harmonic resonances which leads to poor structural dynamic performances. The objective of this thesis is the modeling of layered sheet steel elements, to accurately predict dynamic performance. During the development of the layered sheet steel model, the numerical modeling approach, the Finite Element Analysis and the Experimental Modal Analysis are applied in building a modal model of the layered sheet steel elements. Furthermore, in view of getting a better understanding of the dynamic behavior of layered sheet steel, several binding methods have been studied to understand and demonstrate how a binding method affects the dynamic behavior of layered sheet steel elements when compared to single homogeneous steel plate. Based on the developed layered sheet steel model, the dynamic behavior of a lightweight wheel structure to be used as the structure for the stator of an outer rotor Direct-Drive Permanent Magnet Synchronous Generator designed for high-power wind turbines is studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diversity of algal banks composed of species out the genera Gracilaria Greville and Hypnea J.V. Lamouroux have been impacted by commercial exploitation and coastal eutrophication. The present study sought to construct dynamic models based on algal physiology to simulate seasonal variations in the biomasses of Gracilaria and Hypnea an intertidal reef at Piedade Beach in Jaboatão dos Guararapes, Pernambuco State, Brazil. Five 20 × 20 cm plots in a reef pool on a midlittoral reef platform were randomly sampled during April, June, August, October, and December/2009 and in January and March/2010. Water temperature, pH, irradiance, oxygen and salinity levels as well as the concentrations of ammonia, nitrate and phosphate were measured at the sampling site. Forcing functions were employed in the model to represent abiotic factors, and algal decay was simulated with a dispersal function. Algal growth was modeled using a logistic function and was found to be sensitive to temperature and salinity. Maximum absorption rates of ammonia and phosphate were higher in Hypnea than in Gracilaria, indicating that the former takes up nutrients more efficiently at higher concentrations. Gracilaria biomass peaked at approximately 120 g (dry weight m-2) in March/2010 and was significantly lower in August/2009; Hypnea biomasses, on the other hand, did not show any significant variations among the different months, indicating that resource competition may influence the productivity of these algae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of computational fluid dynamics (CFD) and finite element analysis (FEA) has been growing rapidly in the various fields of science and technology. One of the areas of interest is in biomedical engineering. The altered hemodynamics inside the blood vessels plays a key role in the development of the arterial disease called atherosclerosis, which is the major cause of human death worldwide. Atherosclerosis is often treated with the stenting procedure to restore the normal blood flow. A stent is a tubular, flexible structure, usually made of metals, which is driven and expanded in the blocked arteries. Despite the success rate of the stenting procedure, it is often associated with the restenosis (re-narrowing of the artery) process. The presence of non-biological device in the artery causes inflammation or re-growth of atherosclerotic lesions in the treated vessels. Several factors including the design of stents, type of stent expansion, expansion pressure, morphology and composition of vessel wall influence the restenosis process. Therefore, the role of computational studies is crucial in the investigation and optimisation of the factors that influence post-stenting complications. This thesis focuses on the stent-vessel wall interactions followed by the blood flow in the post-stenting stage of stenosed human coronary artery. Hemodynamic and mechanical stresses were analysed in three separate stent-plaque-artery models. Plaque was modeled as a multi-layer (fibrous cap (FC), necrotic core (NC), and fibrosis (F)) and the arterial wall as a single layer domain. CFD/FEA simulations were performed using commercial software packages in several models mimicking the various stages and morphologies of atherosclerosis. The tissue prolapse (TP) of stented vessel wall, the distribution of von Mises stress (VMS) inside various layers of vessel wall, and the wall shear stress (WSS) along the luminal surface of the deformed vessel wall were measured and evaluated. The results revealed the role of the stenosis size, thickness of each layer of atherosclerotic wall, thickness of stent strut, pressure applied for stenosis expansion, and the flow condition in the distribution of stresses. The thicknesses of FC, and NC and the total thickness of plaque are critical in controlling the stresses inside the tissue. A small change in morphology of artery wall can significantly affect the distribution of stresses. In particular, FC is the most sensitive layer to TP and stresses, which could determine plaque’s vulnerability to rupture. The WSS is highly influenced by the deflection of artery, which in turn is dependent on the structural composition of arterial wall layers. Together with the stenosis size, their roles could play a decisive role in controlling the low values of WSS (<0.5 Pa) prone to restenosis. Moreover, the time dependent flow altered the percentage of luminal area with WSS values less than 0.5 Pa at different time instants. The non- Newtonian viscosity model of the blood properties significantly affects the prediction of WSS magnitude. The outcomes of this investigation will help to better understand the roles of the individual layers of atherosclerotic vessels and their risk to provoke restenosis at the post-stenting stage. As a consequence, the implementation of such an approach to assess the post-stented stresses will assist the engineers and clinicians in optimizing the stenting techniques to minimize the occurrence of restenosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluid particle breakup and coalescence are important phenomena in a number of industrial flow systems. This study deals with a gas-liquid bubbly flow in one wastewater cleaning application. Three-dimensional geometric model of a dispersion water system was created in ANSYS CFD meshing software. Then, numerical study of the system was carried out by means of unsteady simulations performed in ANSYS FLUENT CFD software. Single-phase water flow case was setup to calculate the entire flow field using the RNG k-epsilon turbulence model based on the Reynolds-averaged Navier-Stokes (RANS) equations. Bubbly flow case was based on a computational fluid dynamics - population balance model (CFD-PBM) coupled approach. Bubble breakup and coalescence were considered to determine the evolution of the bubble size distribution. Obtained results are considered as steps toward optimization of the cleaning process and will be analyzed in order to make the process more efficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Master Thesis the characteristics of the chosen fractal microstrip antennas are investigated. For modeling has been used the structure of the square Serpinsky fractal curves. During the elaboration of this Master thesis the following steps were undertaken: 1) calculation and simulation of square microstrip antennа, 2) optimizing for obtaining the required characteristics on the frequency 2.5 GHz, 3) simulation and calculation of the second and third iteration of the Serpinsky fractal curves, 4) radiation patterns and intensity distribution of these antennas. In this Master’s Thesis the search for the optimal position of the port and fractal elements was conducted. These structures can be used in perspective for creation of antennas working at the same time in different frequency range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malaria continues to infect millions and kill hundreds of thousands of people worldwide each year, despite over a century of research and attempts to control and eliminate this infectious disease. Challenges such as the development and spread of drug resistant malaria parasites, insecticide resistance to mosquitoes, climate change, the presence of individuals with subpatent malaria infections which normally are asymptomatic and behavioral plasticity in the mosquito hinder the prospects of malaria control and elimination. In this thesis, mathematical models of malaria transmission and control that address the role of drug resistance, immunity, iron supplementation and anemia, immigration and visitation, and the presence of asymptomatic carriers in malaria transmission are developed. A within-host mathematical model of severe Plasmodium falciparum malaria is also developed. First, a deterministic mathematical model for transmission of antimalarial drug resistance parasites with superinfection is developed and analyzed. The possibility of increase in the risk of superinfection due to iron supplementation and fortification in malaria endemic areas is discussed. The model results calls upon stakeholders to weigh the pros and cons of iron supplementation to individuals living in malaria endemic regions. Second, a deterministic model of transmission of drug resistant malaria parasites, including the inflow of infective immigrants, is presented and analyzed. The optimal control theory is applied to this model to study the impact of various malaria and vector control strategies, such as screening of immigrants, treatment of drug-sensitive infections, treatment of drug-resistant infections, and the use of insecticide-treated bed nets and indoor spraying of mosquitoes. The results of the model emphasize the importance of using a combination of all four controls tools for effective malaria intervention. Next, a two-age-class mathematical model for malaria transmission with asymptomatic carriers is developed and analyzed. In development of this model, four possible control measures are analyzed: the use of long-lasting treated mosquito nets, indoor residual spraying, screening and treatment of symptomatic, and screening and treatment of asymptomatic individuals. The numerical results show that a disease-free equilibrium can be attained if all four control measures are used. A common pitfall for most epidemiological models is the absence of real data; model-based conclusions have to be drawn based on uncertain parameter values. In this thesis, an approach to study the robustness of optimal control solutions under such parameter uncertainty is presented. Numerical analysis of the optimal control problem in the presence of parameter uncertainty demonstrate the robustness of the optimal control approach that: when a comprehensive control strategy is used the main conclusions of the optimal control remain unchanged, even if inevitable variability remains in the control profiles. The results provide a promising framework for the design of cost-effective strategies for disease control with multiple interventions, even under considerable uncertainty of model parameters. Finally, a separate work modeling the within-host Plasmodium falciparum infection in humans is presented. The developed model allows re-infection of already-infected red blood cells. The model hypothesizes that in severe malaria due to parasite quest for survival and rapid multiplication, the Plasmodium falciparum can be absorbed in the already-infected red blood cells which accelerates the rupture rate and consequently cause anemia. Analysis of the model and parameter identifiability using Markov chain Monte Carlo methods is presented.