977 resultados para mechanical composition
Resumo:
We demonstrate the effect of mechanical strain on the electrostrictive behavior of catalytically grown cellular structure of carbon nanotube (CNT). In the small strain regime, where the stress-strain behavior of the material is linear, application of an electric-field along the mechanical loading direction induces an instantaneous increase in the stress and causes an increase in the apparent Young's modulus. The instantaneous increase in the stress shows a cubic-polynomial dependence on the electric-field, which is attributed to the non-linear coupling of the mechanical strain and the electric-field induced polarization of the CNT. The electrostriction induced actuation becomes >100 times larger if the CNT sample is pre-deformed to a small strain. However, in the non-linear stress-strain regime, although a sharp increase in the apparent Young's modulus is observed upon application of an electric-field, no instantaneous increase in the stress occurs. This characteristic suggests that the softening due to the buckling of individual CNT compensates for any instantaneous rise in the electrostriction induced stress at the higher strains. We also present an analytical model to elucidate the experimental observations. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Neutron powder diffraction study of Ba(Ti1-xZrx)O-3 at close composition intervals has revealed coexistence of ferroelectric phases: orthorhombic (Amm2) + tetragonal (P4mm) for 0.02 <= x <= 0.05 and rhombohedral (R3m) + orthorhombic (Amm2) for 0.07 <= x < 0.09. These compositions exhibit relatively enhanced piezoelectric properties as compared to their single phase counterparts outside this composition region, confirming the polymorphic phase boundary nature of the phase coexistence regions. (C) 2013 AIP Publishing LLC.
Resumo:
A one-dimensional coupled multi-physics based model has been developed to accurately compute the effects of electrostatic, mechanical, and thermal field interactions on the electronic energy band structure in group III-nitrides thin film heterostructures. Earlier models reported in published literature assumes electro-mechanical field with uniform temperature thus neglecting self-heating. Also, the effects of diffused interface on the energy band structure were not studied. We include these effects in a self-consistent manner wherein the transport equation is introduced along with the electro-mechanical models, and the lattice structural variation as observed in experiments are introduced at the interface. Due to these effects, the electrostatic potential distribution in the heterostructure is altered. The electron and hole ground state energies decrease by 5% and 9%, respectively, at a relative temperature of 700 K, when compared with the results obtained from the previously reported electro-mechanical model assuming constant and uniform temperature distribution. A diffused interface decreases the ground state energy of electrons and holes by about 11% and 9%, respectively, at a relative temperature of 700 K when compared with the predictions based on uniform temperature based electro-mechanical model. (C) 2013 AIP Publishing LLC.
Resumo:
The magnetic saw effect, induced by the Lorentz force generated due to the application of a series of electromagnetic ( EM) pulses, can be utilized to cut a metallic component containing a pre-existing cut or crack. By combining a mechanical force with the Lorentz force, the cut can be propagated along any arbitrary direction in a controlled fashion, thus producing an `electromagnetic jigsaw', yielding a novel tool-less, free-formed manufacturing process, particularly suitable for hard-to-cut metals. This paper presents validation of the above concept based on a simple analytical model, along with experiments on two materials - Pb foil and steel plate. (C) 2013 The Authors. Published by Elsevier B.V. Selection and/or peer-review under responsibility of Professor Bert Lauwers
Resumo:
Although weak interactions, such as C-H center dot center dot center dot O and pi-stacking, are generally considered to be insignificant, it is their reorganization that holds the key for many a solid-state phenomenon, such as phase transitions, plastic deformation, elastic flexibility, and mechanochromic luminescence in solid-state fluorophores. Despite this, the role of weak interactions in these dynamic phenomena is poorly understood. In this study, we investigate two co-crystal polymorphs of caffeine:4-chloro-3-nitrobenzoic acid, which have close structural similarity (2D layered structures), but surprisingly show distinct mechanical behavior. Form I is brittle, but shows shear-induced phase instability and, upon grinding, converts to Form II, which is soft and plastically shearable. This observation is in contrast to those reported in earlier studies on aspirin, wherein the metastable drug forms are softer and convert to stable and harder forms upon stressing To establish a molecular level understanding, have investigated the two co-crystal polymorphs I and II by single crystal X-ray diffraction, nanoindentation to quantify mechanical properties, and theoretical calculations. The lower hardness (from nanoindentation) and smooth potential surfaces (from theoretical studies) for shearing of layers in Form II allowed us to rationalize the role of stronger intralayer (sp(2))C-H center dot center dot center dot O and nonspecific interlayer pi-stacking interactions in the structure of II. Although the Form I also possesses the same type of interactions, its strength is clearly opposite, that is, weaker intralayer (sp(3))C-H center dot center dot center dot O and specific interlayer pi-stacking interactions. Hence, Form I is harder than Form IL Theoretical calculations and indentation on (111) of Form I suggested the low resistance of this face to mechanical stress; thus, Form I converts to II upon mechanical action. Hence, our approach demonstrates the usefulness of multiple techniques for establishing the role of weak noncovalent interactions in solid-state dynamic phenomena, such as stress induced phase transformation, and hence is important in the context of solid-state pharmaceutical chemistry and crystal engineering.
Resumo:
Small-scale mechanical testing of materials has gained prominence in the last decade or so due to the continuous miniaturization of components and devices in everyday application. This review describes the various micro-fabrication processes associated with the preparation of miniaturized specimens, geometries of test specimens and the small scale testing techniques used to determine the mechanical behaviour of materials at the length scales of a few hundred micro-meters and below. This is followed by illustrative examples in a selected class of materials. The choice of the case studies is based on the relevance of the materials used in today's world: evaluation of mechanical properties of thermal barrier coatings (TBCs), applied for enhanced high temperature protection of advanced gas turbine engine components, is essential since its failure by fracture leads to the collapse of the engine system. Si-based substrates, though brittle, are indispensible for MEMS/NEMS applications. Biological specimens, whose response to mechanical loads is important to ascertain their role in diseases and to mimic their structure for attaining high fracture toughness and impact resistance. An insight into the mechanisms behind the observed size effects in metallic systems can be exploited to achieve excellent strength at the nano-scale. A future outlook of where all this is heading is also presented.
Resumo:
Nanoindentation is a technique which can be used to measure the mechanical properties of materials with high precision, even when they are only available in small quantities. As a result of this, nanoindentation has gained the attention of the crystal engineering community, who are not only interested in measuring the properties of single crystals of organic, inorganic and hybrid structures, but also wish to correlate the measured responses with the underlying structural features and intermolecular interactions. Keeping this emerging interest in view, a brief overview of the technique, with particular emphasis on the procedures for conducting experiments and analyzing the resulting data, is presented in this Tutorial style Highlight. The precautions that need to be taken and the properties that one can measure using nanoindentation are highlighted. This paper ends with a brief summary of the recent additional features that have been added to this technique and an outlook for nanoindentation within the context of crystal engineering.
Resumo:
Glycidyl azide polymer (GAP) was cured through click chemistry by reaction of the azide group with bispropargyl succinate (BPS) through a 1,3-dipolar cycloaddition reaction to form 1,2,3-triazole network. The properties of GAP-based triazole networks are compared with the urethane cured GAP-systems. The glass transition temperature (T-g), tensile strength, and modulus of the system increased with crosslink density, controlled by the azide to propargyl ratio. The triazole incorporation has a higher T-g in comparison to the GAP-urethane system (T-g-20 degrees C) and the networks exhibit biphasic transitions at 61 and 88 degrees C. The triazole curing was studied using Differential Scanning Calorimetry (DSC) and the related kinetic parameters were helpful for predicting the cure profile at a given temperature. Density functional theory (DFT)-based theoretical calculations implied marginal preference for 1,5-addition over 1,4-addition for the cycloaddition between azide and propargyl group. Thermogravimetic analysis (TG) showed better thermal stability for the GAP-triazole and the mechanism of decomposition was elucidated using pyrolysis GC-MS studies. The higher heat of exothermic decomposition of triazole adduct (418kJmol(-1)) against that of azide (317kJmol(-1)) and better mechanical properties of the GAP-triazole renders it a better propellant binder than the GAP-urethane system.
Resumo:
Conceptual design involves identification of required functions of the intended design, generation of concepts to fulfill these functions, and evaluation of these concepts to select the most promising ones for further development. The focus of this paper is the second phase-concept generation, in which a challenge has been to develop possible physical embodiments to offer designers for exploration and evaluation. This paper investigates the issue of how to transform and thus synthesise possible generic physical embodiments and reports an implemented method that could automatically generate these embodiments. In this paper, a method is proposed to transform a variety of possible initial solutions to a design problem into a set of physical solutions that are described in terms of abstraction of mechanical movements. The underlying principle of this method is to make it possible to link common attributes between a specific abstract representation and its possible physical objects. For a given input, this method can produce a set of concepts in terms of their generic physical embodiments. The method can be used to support designers to start with a given input-output function and systematically search for physical objects for design consideration in terms of simplified functional, spatial, and mechanical movement requirements.
Resumo:
A356 and 6061 aluminum alloys were joined by friction stir welding at constant tool rotational rate with different tool-traversing speeds. Thermomechanical data of welding showed that increment in tool speed reduced the pseudo heat index and temperature at weld nugget (WN). On the other hand, volume of material within extrusion zone, strain rate, and Zenner Hollomon parameter were reduced with decrease in tool speed. Optical microstructure of WN exhibited nearly uniform dispersion of Si-rich particles, fine grain size of 6061 Al alloy, and disappearance of second phase within 6061 Al alloy. With enhancement in welding speed, matrix grain size became finer, yet size of Si-rich particles did not reduce incessantly. Size of Si-rich particles was governed by interaction time between tool and substrate. Mechanical property of WN was evaluated. It has been found that the maximum joint efficiency of 116% with respect to that of 6061 alloy was obtained at an intermediate tool-traversing speed, where matrix grain size was significantly fine and those of Si-rich particles were substantially small.
Resumo:
In the present study, high strength bulk ultrafine-grained titanium alloy Ti-6Al-4V bars were successfully processed using multi-pass warm rolling. Ti-6Al-4V bars of 12 mm diameter and several metres long were processed by multi-pass warm rolling at 650 degrees C, 700 degrees C and 750 degrees C. The highest achieved mechanical properties for Ti-6Al-4V in as rolled condition were yield strength 1191 MPa, ultimate tensile strength of 1299 MPa having an elongation of 10% when the rolling temperature was 650 degrees C. The concurrent evolution of microstructure and texture has been studied using optical microscopy, electron back scattered diffraction and x-ray diffraction. The significant improvement in mechanical properties has been attributed to the ultrafine-grained microstructure as well as the morphology of alpha and beta phases in the warm rolled specimens. The warm rolling of Ti-6Al-4V leads to formation of < 10 (1) over bar0 >alpha//RD fibre texture. This study shows that multi-pass warm rolling has potential to eliminate the costly and time consuming heat treatment steps for small diameter bar products, as the solution treated and aged (STA) properties are achievable in the as rolled condition itself. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Silicene, a graphene analogue of silicon, has been generating immense interest due to its potential for applications in miniaturized devices. Unlike planar graphene, silicene prefers a buckled structure. Here we explore the possibility of stabilizing the planar form of silicene by Ni doping using first principles density functional theory based calculations. It is found that planar as well as buckled structure is stable for Ni-doped silicene, but the buckled sheet has slightly lower total energy. The planar silicene sheet has unstable phonon modes. A comparative study of the mechanical properties reveals that the in-plane stiffness of both the pristine and the doped planar silicene is higher compared to that of the buckled silicene. This suggests that planar silicene is mechanically more robust. Electronic structure calculations of the planar and buckled Ni-doped silicene show that the energy bands at the Dirac point transform from linear behavior to parabolic dispersion. Furthermore, we extend our study to Ge and Sn sheets that are also stable and the trends of comparable mechanical stability of the planar and buckled phases remain the same.
Resumo:
Presented are new measurements of the standard Gibbs free energy of formation of rhombohedral LaCrO3 from component oxides La2O3 and Cr2O3 in the temperature range from 875 to 1175K, using a bielectrolyte solid-state cell incorporating single crystal CaF2 and composition-graded solid electrolyte (LaF3)(y)(CaF2)(1-y) (y=0-0.32). The results can be represented analytically as Delta G(f(ox))(o) (+/- 2270)/Jmol(-1)=-72329+4.932 (T/K). The measurements were undertaken to resolve serious discrepancies in the data reported in the literature. A critical analysis of previous electrochemical measurements indicates several deficiencies that have been rectified in this study. The enthalpy of formation obtained in this study is consistent with calorimetric data. The standard enthalpy of formation of orthorhombic LaCrO3 from elements at 298.15K computed from the results of this study is Delta H-f(298.15)(o)/kJmol(-1)=-1536.2 (+/- 7). The standard entropy of orthorhombic LaCrO3 at 298.15K is estimated as 99.0 (+/- 4.5)J(molK)(-1).
Resumo:
Glasses and glass-nanocrystal (anatase TiO2) composites in BaO-TiO2-B2O3 system were fabricated by conventional melt-quenching technique and controlled heat treatment respectively. Poisson's ratio and Young's moduli were predicted through Makishima-Mackenzie theoretical equation for the as-quenched glasses by taking the four and three coordinated borons into account. Mechanical properties of the glasses and glass-nanocrystal composites were investigated in detail through nanoindentation and microindentation studies. Predicted Young's moduli of glasses were found to be in reasonable agreement with nanoindentation Measurements. Hardness and Young's modulus were enhanced with increasing volume fraction of nanocrystallites of TiO2 in glass matrix whereas fracture toughness was found susceptible to the surface features. The results were correlated to the structural units and nanocrystals present in the glasses. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The conceptual model for deep geological disposal of high level nuclear waste (HLW) is based on multiple barrier system consisting of natural and engineered barriers. Buffer/backfill material is regarded as the most important engineered barrier in HLW repositories. Due to large swelling ability, cation adsorption capacity, and low permeability bentonite is considered as suitable buffer material in HLW repositories. Japan has identified Kunigel VI bentonite, South Korea - Kyungju bentonite, China - GMZ bentonite, Belgium - FoCa clay, Sweden - MX-80 bentonite, Spain - FEBEX bentonite and Canada - Avonseal bentonite as candidate bentonite buffer for deep geological repository program. An earlier study on Indian bentonites by one of the authors suggested that bentonite from Barmer district of Rajasthan (termed Barmer 1 bentonite), India is suited for use as buffer material in deep geological repositories. However, the hydro-mechanical properties of the Barmer 1 bentonite are unavailable. This paper characterizes Barmer 1 bentonite for hydro-mechanical properties, such as, swell pressure, saturated permeability, soil water characteristic curve (SWCC) and unconfined compression strength at different dry densities. The properties of Barmer 1 bentonite were compared with bentonite buffers reported in literature and equations for designing swell pressure and saturated permeability coefficient of bentonite buffers were arrived at. (C) 2013 Elsevier B.V. All rights reserved.