954 resultados para maximized monte Carlo test


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Birnbaum-Saunders regression model is becoming increasingly popular in lifetime analyses and reliability studies. In this model, the signed likelihood ratio statistic provides the basis for testing inference and construction of confidence limits for a single parameter of interest. We focus on the small sample case, where the standard normal distribution gives a poor approximation to the true distribution of the statistic. We derive three adjusted signed likelihood ratio statistics that lead to very accurate inference even for very small samples. Two empirical applications are presented. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the issue of performing accurate small-sample likelihood-based inference in beta regression models, which are useful for modelling continuous proportions that are affected by independent variables. We derive small-sample adjustments to the likelihood ratio statistic in this class of models. The adjusted statistics can be easily implemented from standard statistical software. We present Monte Carlo simulations showing that inference based on the adjusted statistics we propose is much more reliable than that based on the usual likelihood ratio statistic. A real data example is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Bayesian inference approach using Markov Chain Monte Carlo (MCMC) is developed for the logistic positive exponent (LPE) model proposed by Samejima and for a new skewed Logistic Item Response Theory (IRT) model, named Reflection LPE model. Both models lead to asymmetric item characteristic curves (ICC) and can be appropriate because a symmetric ICC treats both correct and incorrect answers symmetrically, which results in a logical contradiction in ordering examinees on the ability scale. A data set corresponding to a mathematical test applied in Peruvian public schools is analyzed, where comparisons with other parametric IRT models also are conducted. Several model comparison criteria are discussed and implemented. The main conclusion is that the LPE and RLPE IRT models are easy to implement and seem to provide the best fit to the data set considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The two-parameter Birnbaum-Saunders distribution has been used successfully to model fatigue failure times. Although censoring is typical in reliability and survival studies, little work has been published on the analysis of censored data for this distribution. In this paper, we address the issue of performing testing inference on the two parameters of the Birnbaum-Saunders distribution under type-II right censored samples. The likelihood ratio statistic and a recently proposed statistic, the gradient statistic, provide a convenient framework for statistical inference in such a case, since they do not require to obtain, estimate or invert an information matrix, which is an advantage in problems involving censored data. An extensive Monte Carlo simulation study is carried out in order to investigate and compare the finite sample performance of the likelihood ratio and the gradient tests. Our numerical results show evidence that the gradient test should be preferred. Further, we also consider the generalized Birnbaum-Saunders distribution under type-II right censored samples and present some Monte Carlo simulations for testing the parameters in this class of models using the likelihood ratio and gradient tests. Three empirical applications are presented. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we obtain asymptotic expansions up to order n(-1/2) for the nonnull distribution functions of the likelihood ratio, Wald, score and gradient test statistics in exponential family nonlinear models (Cordeiro and Paula, 1989), under a sequence of Pitman alternatives. The asymptotic distributions of all four statistics are obtained for testing a subset of regression parameters and for testing the dispersion parameter, thus generalising the results given in Cordeiro et al. (1994) and Ferrari et al. (1997). We also present Monte Carlo simulations in order to compare the finite-sample performance of these tests. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies a special class of vector smooth-transition autoregressive (VSTAR) models that contains common nonlinear features (CNFs), for which we proposed a triangular representation and developed a procedure of testing CNFs in a VSTAR model. We first test a unit root against a stable STAR process for each individual time series and then examine whether CNFs exist in the system by Lagrange Multiplier (LM) test if unit root is rejected in the first step. The LM test has standard Chi-squared asymptotic distribution. The critical values of our unit root tests and small-sample properties of the F form of our LM test are studied by Monte Carlo simulations. We illustrate how to test and model CNFs using the monthly growth of consumption and income data of United States (1985:1 to 2011:11).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper generalizes the HEGY-type test to detect seasonal unit roots in data at any frequency, based on the seasonal unit root tests in univariate time series by Hylleberg, Engle, Granger and Yoo (1990). We introduce the seasonal unit roots at first, and then derive the mechanism of the HEGY-type test for data with any frequency. Thereafter we provide the asymptotic distributions of our test statistics when different test regressions are employed. We find that the F-statistics for testing conjugation unit roots have the same asymptotic distributions. Then we compute the finite-sample and asymptotic critical values for daily and hourly data by a Monte Carlo method. The power and size properties of our test for hourly data is investigated, and we find that including lag augmentations in auxiliary regression without lag elimination have the smallest size distortion and tests with seasonal dummies included in auxiliary regression have more power than the tests without seasonal dummies. At last we apply the our test to hourly wind power production data in Sweden and shows there are no seasonal unit roots in the series.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Thesis is the result of my Master Degree studies at the Graduate School of Economics, Getúlio Vargas Foundation, from January 2004 to August 2006. am indebted to my Thesis Advisor, Professor Luiz Renato Lima, who introduced me to the Econometrics' world. In this Thesis, we study time-varying quantile process and we develop two applications, which are presented here as Part and Part II. Each of these parts was transformed in paper. Both papers were submitted. Part shows that asymmetric persistence induces ARCH effects, but the LMARCH test has power against it. On the other hand, the test for asymmetric dynamics proposed by Koenker and Xiao (2004) has correct size under the presence of ARCH errors. These results suggest that the LM-ARCH and the Koenker-Xiao tests may be used in applied research as complementary tools. In the Part II, we compare four different Value-at-Risk (VaR) methodologies through Monte Cario experiments. Our results indicate that the method based on quantile regression with ARCH effect dominates other methods that require distributional assumption. In particular, we show that the non-robust method ologies have higher probability to predict VaRs with too many violations. We illustrate our findings with an empirical exercise in which we estimate VaR for returns of São Paulo stock exchange index, IBOVESPA, during periods of market turmoil. Our results indicate that the robust method based on quantile regression presents the least number of violations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a novel approach to econometric forecasting of stationary and ergodic time series within a panel-data framework. Our key element is to employ the (feasible) bias-corrected average forecast. Using panel-data sequential asymptotics we show that it is potentially superior to other techniques in several contexts. In particular, it is asymptotically equivalent to the conditional expectation, i.e., has an optimal limiting mean-squared error. We also develop a zeromean test for the average bias and discuss the forecast-combination puzzle in small and large samples. Monte-Carlo simulations are conducted to evaluate the performance of the feasible bias-corrected average forecast in finite samples. An empirical exercise based upon data from a well known survey is also presented. Overall, theoretical and empirical results show promise for the feasible bias-corrected average forecast.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes unit tests based on partially adaptive estimation. The proposed tests provide an intermediate class of inference procedures that are more efficient than the traditional OLS-based methods and simpler than unit root tests based on fully adptive estimation using nonparametric methods. The limiting distribution of the proposed test is a combination of standard normal and the traditional Dickey-Fuller (DF) distribution, including the traditional ADF test as a special case when using Gaussian density. Taking into a account the well documented characteristic of heavy-tail behavior in economic and financial data, we consider unit root tests coupled with a class of partially adaptive M-estimators based on the student-t distributions, wich includes te normal distribution as a limiting case. Monte Carlo Experiments indicate that, in the presence of heavy tail distributions or innovations that are contaminated by outliers, the proposed test is more powerful than the traditional ADF test. We apply the proposed test to several macroeconomic time series that have heavy-tailed distributions. The unit root hypothesis is rejected in U.S. real GNP, supporting the literature of transitory shocks in output. However, evidence against unit roots is not found in real exchange rate and nominal interest rate even haevy-tail is taken into a account.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a novel approach to econometric forecasting of stationary and ergodic time series within a panel-data framework. Our key element is to employ the bias-corrected average forecast. Using panel-data sequential asymptotics we show that it is potentially superior to other techniques in several contexts. In particular it delivers a zero-limiting mean-squared error if the number of forecasts and the number of post-sample time periods is sufficiently large. We also develop a zero-mean test for the average bias. Monte-Carlo simulations are conducted to evaluate the performance of this new technique in finite samples. An empirical exercise, based upon data from well known surveys is also presented. Overall, these results show promise for the bias-corrected average forecast.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While it is recognized that output fuctuations are highly persistent over certain range, less persistent results are also found around very long horizons (Conchrane, 1988), indicating the existence of local or temporary persistency. In this paper, we study time series with local persistency. A test for stationarity against locally persistent alternative is proposed. Asymptotic distributions of the test statistic are provided under both the null and the alternative hypothesis of local persistency. Monte Carlo experiment is conducted to study the power and size of the test. An empirical application reveals that many US real economic variables may exhibit local persistency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we show that the widely used stationarity tests such as the KPSS test have power close to size in the presence of time-varying unconditional variance. We propose a new test as a complement of the existing tests. Monte Carlo experiments show that the proposed test possesses the following characteristics: (i) In the presence of unit root or a structural change in the mean, the proposed test is as powerful as the KPSS and other tests; (ii) In the presence a changing variance, the traditional tests perform badly whereas the proposed test has high power comparing to the existing tests; (iii) The proposed test has the same size as traditional stationarity tests under the null hypothesis of stationarity. An application to daily observations of return on US Dollar/Euro exchange rate reveals the existence of instability in the unconditional variance when the entire sample is considered, but stability is found in subsamples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a novel approach to econometric forecasting of stationary and ergodic time series within a panel-data framework. Our key element is to employ the (feasible) bias-corrected average forecast. Using panel-data sequential asymptotics we show that it is potentially superior to other techniques in several contexts. In particular, it is asymptotically equivalent to the conditional expectation, i.e., has an optimal limiting mean-squared error. We also develop a zeromean test for the average bias and discuss the forecast-combination puzzle in small and large samples. Monte-Carlo simulations are conducted to evaluate the performance of the feasible bias-corrected average forecast in finite samples. An empirical exercise, based upon data from a well known survey is also presented. Overall, these results show promise for the feasible bias-corrected average forecast.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is composed of three essays referent to the subjects of macroeconometrics and Önance. In each essay, which corresponds to one chapter, the objective is to investigate and analyze advanced econometric techniques, applied to relevant macroeconomic questions, such as the capital mobility hypothesis and the sustainability of public debt. A Önance topic regarding portfolio risk management is also investigated, through an econometric technique used to evaluate Value-at-Risk models. The Örst chapter investigates an intertemporal optimization model to analyze the current account. Based on Campbell & Shillerís (1987) approach, a Wald test is conducted to analyze a set of restrictions imposed to a VAR used to forecast the current account. The estimation is based on three di§erent procedures: OLS, SUR and the two-way error decomposition of Fuller & Battese (1974), due to the presence of global shocks. A note on Granger causality is also provided, which is shown to be a necessary condition to perform the Wald test with serious implications to the validation of the model. An empirical exercise for the G-7 countries is presented, and the results substantially change with the di§erent estimation techniques. A small Monte Carlo simulation is also presented to investigate the size and power of the Wald test based on the considered estimators. The second chapter presents a study about Öscal sustainability based on a quantile autoregression (QAR) model. A novel methodology to separate periods of nonstationarity from stationary ones is proposed, which allows one to identify trajectories of public debt that are not compatible with Öscal sustainability. Moreover, such trajectories are used to construct a debt ceiling, that is, the largest value of public debt that does not jeopardize long-run Öscal sustainability. An out-of-sample forecast of such a ceiling is also constructed, and can be used by policy makers interested in keeping the public debt on a sustainable path. An empirical exercise by using Brazilian data is conducted to show the applicability of the methodology. In the third chapter, an alternative backtest to evaluate the performance of Value-at-Risk (VaR) models is proposed. The econometric methodology allows one to directly test the overall performance of a VaR model, as well as identify periods of an increased risk exposure, which seems to be a novelty in the literature. Quantile regressions provide an appropriate environment to investigate VaR models, since they can naturally be viewed as a conditional quantile function of a given return series. An empirical exercise is conducted for daily S&P500 series, and a Monte Carlo simulation is also presented, revealing that the proposed test might exhibit more power in comparison to other backtests.