973 resultados para machine selection
Resumo:
Afin d'enrichir les données de corpus bilingues parallèles, il peut être judicieux de travailler avec des corpus dits comparables. En effet dans ce type de corpus, même si les documents dans la langue cible ne sont pas l'exacte traduction de ceux dans la langue source, on peut y retrouver des mots ou des phrases en relation de traduction. L'encyclopédie libre Wikipédia constitue un corpus comparable multilingue de plusieurs millions de documents. Notre travail consiste à trouver une méthode générale et endogène permettant d'extraire un maximum de phrases parallèles. Nous travaillons avec le couple de langues français-anglais mais notre méthode, qui n'utilise aucune ressource bilingue extérieure, peut s'appliquer à tout autre couple de langues. Elle se décompose en deux étapes. La première consiste à détecter les paires d’articles qui ont le plus de chance de contenir des traductions. Nous utilisons pour cela un réseau de neurones entraîné sur un petit ensemble de données constitué d'articles alignés au niveau des phrases. La deuxième étape effectue la sélection des paires de phrases grâce à un autre réseau de neurones dont les sorties sont alors réinterprétées par un algorithme d'optimisation combinatoire et une heuristique d'extension. L'ajout des quelques 560~000 paires de phrases extraites de Wikipédia au corpus d'entraînement d'un système de traduction automatique statistique de référence permet d'améliorer la qualité des traductions produites. Nous mettons les données alignées et le corpus extrait à la disposition de la communauté scientifique.
Resumo:
Malgré des progrès constants en termes de capacité de calcul, mémoire et quantité de données disponibles, les algorithmes d'apprentissage machine doivent se montrer efficaces dans l'utilisation de ces ressources. La minimisation des coûts est évidemment un facteur important, mais une autre motivation est la recherche de mécanismes d'apprentissage capables de reproduire le comportement d'êtres intelligents. Cette thèse aborde le problème de l'efficacité à travers plusieurs articles traitant d'algorithmes d'apprentissage variés : ce problème est vu non seulement du point de vue de l'efficacité computationnelle (temps de calcul et mémoire utilisés), mais aussi de celui de l'efficacité statistique (nombre d'exemples requis pour accomplir une tâche donnée). Une première contribution apportée par cette thèse est la mise en lumière d'inefficacités statistiques dans des algorithmes existants. Nous montrons ainsi que les arbres de décision généralisent mal pour certains types de tâches (chapitre 3), de même que les algorithmes classiques d'apprentissage semi-supervisé à base de graphe (chapitre 5), chacun étant affecté par une forme particulière de la malédiction de la dimensionalité. Pour une certaine classe de réseaux de neurones, appelés réseaux sommes-produits, nous montrons qu'il peut être exponentiellement moins efficace de représenter certaines fonctions par des réseaux à une seule couche cachée, comparé à des réseaux profonds (chapitre 4). Nos analyses permettent de mieux comprendre certains problèmes intrinsèques liés à ces algorithmes, et d'orienter la recherche dans des directions qui pourraient permettre de les résoudre. Nous identifions également des inefficacités computationnelles dans les algorithmes d'apprentissage semi-supervisé à base de graphe (chapitre 5), et dans l'apprentissage de mélanges de Gaussiennes en présence de valeurs manquantes (chapitre 6). Dans les deux cas, nous proposons de nouveaux algorithmes capables de traiter des ensembles de données significativement plus grands. Les deux derniers chapitres traitent de l'efficacité computationnelle sous un angle différent. Dans le chapitre 7, nous analysons de manière théorique un algorithme existant pour l'apprentissage efficace dans les machines de Boltzmann restreintes (la divergence contrastive), afin de mieux comprendre les raisons qui expliquent le succès de cet algorithme. Finalement, dans le chapitre 8 nous présentons une application de l'apprentissage machine dans le domaine des jeux vidéo, pour laquelle le problème de l'efficacité computationnelle est relié à des considérations d'ingénierie logicielle et matérielle, souvent ignorées en recherche mais ô combien importantes en pratique.
Resumo:
Cette thèse étudie la représentation de la machine chez Robida. La partie centrale de notre recherche s’intéresse à révéler ses significations et interroge sa mise en scène littéraire et visuelle dans chacun des romans de la trilogie d’anticipation scientifique la plus connue de l’auteur-illustrateur. La quête se transforme en un voyage continu entre le lisible et le visible, le dit et le non-dit, la description littéraire et l’imagination, la réalité et la fiction. Nous nous intéressons à l’évolution de la vision de Robida : dans Le Vingtième siècle, l’image de la machine bienfaisante, facilitant la vie de l’homme, économisant du temps et de l’argent, et contribuant largement à son bonheur et à son divertissement, à part quelques accidents très limités, se traduit par une complémentarité avantageuse entre le texte d’une part et les vignettes, les tableaux et les hors-textes se trouvant dans le récit, d’autre part. Celle-ci se transforme, dans La Guerre au vingtième siècle, en une inquiétude vis-à-vis de l’instrumentalisation de la machine pour la guerre, qui s’exprime par une projection de la narration vers l’illustration in-texte, et sensibilise le lecteur en montrant le caractère violent et offensif d’appareils uniquement nommés. Celle-ci devient finalement, dans La Vie électrique, synonyme d’un pessimisme total quant à l’implication de la machine dans la société et à la puissance du savoir scientifique dans l’avenir, qui s’affiche dans des hors-textes sombres et maussades. Dans ce cadre, la machine illustrée exige une lecture iconotextuelle, une importance accordée au détail, aux éléments présents ou absents, aux modalités de passage d’un mode de présentation à l’autre, à la place anticipée ou tardive de l’illustration, au rapport entre le texte, le dessin et sa légende, aux mots qui migrent vers le dessin et surtout au reste du décor incomplet. Chez Robida, les louanges qui passent à la critique et l’humour qui se fait cynisme, sont assez représentatifs des espoirs et des craintes suscités par la découverte et la mise en application de l’électricité, par ses vertus, mais aussi par son aspect incontrôlable.
Resumo:
«Construire hors limite: collisions fantastiques entre corps et machines dans la littérature fin-de-siècle française et anglaise» explore un ensemble de textes qui ont surgi à la fin du dix-neuvième siècle en réponse et en réaction à la fulgurante évolution de l’environnement scientifique et technologique, et qui considèrent la relation entre l’homme et la machine en fantasmant sur la zone grise où ils s’intersectent. Les principaux textes étudiés comprennent L’Ève future de Villiers de l’Isle-Adam, Le Surmâle d’Alfred Jarry, Trilby de George Du Maurier, Le Château des Carpathes de Jules Verne, ainsi qu’une sélection de contes dont nous pouvons qualifier de «contes à appareils», notamment «La Machine à parler» de Marcel Schwob. Utilisant la théorie des systèmes comme base méthodologique, cette dissertation cherche à réinterpréter les textes de la fin du dix-neuvième siècle qui naviguent les limites de l’humain et du mécanique et les surfaces sensibles où ils se touchent et interagissent en les réinscrivant dans un projet plus vaste de construction d’identité qui défie le temps chronologique et les échelles mathématiques. Le lien entre la théorie des systèmes et l’architecture – comme méthode d’organisation d’espace blanc en espace habitable – est exploré dans le but de comprendre la manière dont nous façonnons et interprétons le néant à l’origine de l’identité individuelle, et par association collective, en pratiquant littéralement la schématisation et la construction du corps. Des auteurs tels Villiers et Jarry imaginent la construction du corps comme une entreprise scientifique nécessairement fondée et réalisée avec les matériaux et les technologies disponibles, pour ensuite démanteler cette proposition en condamnant le corps technologique à la destruction. La construction d’une identité amplifiée par la technologie prend donc des proportions prométhéennes perpétuellement redessinées dans des actes cycliques de rasage (destruction) et d’érection (édification), et reflétées dans l’écriture palimpsestique du texte. L’intégrité du corps organique étant mis en question, le noyau même de ce que signifie l’être (dans son sens de verbe infinitif) humain pourrait bien s’avérer, si l’on considère la correspondance entre perte de voix et état pathologique dans les textes de Du Maurier, Verne et Schwob, être une structure des plus précaires, distinctement hors sens (unsound).
Resumo:
L’observation de l’exécution d’applications JavaScript est habituellement réalisée en instrumentant une machine virtuelle (MV) industrielle ou en effectuant une traduction source-à-source ad hoc et complexe. Ce mémoire présente une alternative basée sur la superposition de machines virtuelles. Notre approche consiste à faire une traduction source-à-source d’un programme pendant son exécution pour exposer ses opérations de bas niveau au travers d’un modèle objet flexible. Ces opérations de bas niveau peuvent ensuite être redéfinies pendant l’exécution pour pouvoir en faire l’observation. Pour limiter la pénalité en performance introduite, notre approche exploite les opérations rapides originales de la MV sous-jacente, lorsque cela est possible, et applique les techniques de compilation à-la-volée dans la MV superposée. Notre implémentation, Photon, est en moyenne 19% plus rapide qu’un interprète moderne, et entre 19× et 56× plus lente en moyenne que les compilateurs à-la-volée utilisés dans les navigateurs web populaires. Ce mémoire montre donc que la superposition de machines virtuelles est une technique alternative compétitive à la modification d’un interprète moderne pour JavaScript lorsqu’appliqué à l’observation à l’exécution des opérations sur les objets et des appels de fonction.
Resumo:
De plus en plus de recherches sur les Interactions Humain-Machine (IHM) tentent d’effectuer des analyses fines de l’interaction afin de faire ressortir ce qui influence les comportements des utilisateurs. Tant au niveau de l’évaluation de la performance que de l’expérience des utilisateurs, on note qu’une attention particulière est maintenant portée aux réactions émotionnelles et cognitives lors de l’interaction. Les approches qualitatives standards sont limitées, car elles se fondent sur l’observation et des entrevues après l’interaction, limitant ainsi la précision du diagnostic. L’expérience utilisateur et les réactions émotionnelles étant de nature hautement dynamique et contextualisée, les approches d’évaluation doivent l’être de même afin de permettre un diagnostic précis de l’interaction. Cette thèse présente une approche d’évaluation quantitative et dynamique qui permet de contextualiser les réactions des utilisateurs afin d’en identifier les antécédents dans l’interaction avec un système. Pour ce faire, ce travail s’articule autour de trois axes. 1) La reconnaissance automatique des buts et de la structure de tâches de l’utilisateur, à l’aide de mesures oculométriques et d’activité dans l’environnement par apprentissage machine. 2) L’inférence de construits psychologiques (activation, valence émotionnelle et charge cognitive) via l’analyse des signaux physiologiques. 3) Le diagnostic de l‘interaction reposant sur le couplage dynamique des deux précédentes opérations. Les idées et le développement de notre approche sont illustrés par leur application dans deux contextes expérimentaux : le commerce électronique et l’apprentissage par simulation. Nous présentons aussi l’outil informatique complet qui a été implémenté afin de permettre à des professionnels en évaluation (ex. : ergonomes, concepteurs de jeux, formateurs) d’utiliser l’approche proposée pour l’évaluation d’IHM. Celui-ci est conçu de manière à faciliter la triangulation des appareils de mesure impliqués dans ce travail et à s’intégrer aux méthodes classiques d’évaluation de l’interaction (ex. : questionnaires et codage des observations).
Resumo:
La tâche de kinématogramme de points aléatoires est utilisée avec le paradigme de choix forcé entre deux alternatives pour étudier les prises de décisions perceptuelles. Les modèles décisionnels supposent que les indices de mouvement pour les deux alternatives sont encodés dans le cerveau. Ainsi, la différence entre ces deux signaux est accumulée jusqu’à un seuil décisionnel. Cependant, aucune étude à ce jour n’a testé cette hypothèse avec des stimuli contenant des mouvements opposés. Ce mémoire présente les résultats de deux expériences utilisant deux nouveaux stimuli avec des indices de mouvement concurrentiels. Parmi une variété de combinaisons d’indices concurrentiels, la performance des sujets dépend de la différence nette entre les deux signaux opposés. De plus, les sujets obtiennent une performance similaire avec les deux types de stimuli. Ces résultats supportent un modèle décisionnel basé sur l’accumulation des indices de mouvement net et suggèrent que le processus décisionnel peut intégrer les signaux de mouvement à partir d’une grande gamme de directions pour obtenir un percept global de mouvement.
Resumo:
Dans ce mémoire, nous examinons certaines propriétés des représentations distribuées de mots et nous proposons une technique pour élargir le vocabulaire des systèmes de traduction automatique neurale. En premier lieu, nous considérons un problème de résolution d'analogies bien connu et examinons l'effet de poids adaptés à la position, le choix de la fonction de combinaison et l'impact de l'apprentissage supervisé. Nous enchaînons en montrant que des représentations distribuées simples basées sur la traduction peuvent atteindre ou dépasser l'état de l'art sur le test de détection de synonymes TOEFL et sur le récent étalon-or SimLex-999. Finalament, motivé par d'impressionnants résultats obtenus avec des représentations distribuées issues de systèmes de traduction neurale à petit vocabulaire (30 000 mots), nous présentons une approche compatible à l'utilisation de cartes graphiques pour augmenter la taille du vocabulaire par plus d'un ordre de magnitude. Bien qu'originalement développée seulement pour obtenir les représentations distribuées, nous montrons que cette technique fonctionne plutôt bien sur des tâches de traduction, en particulier de l'anglais vers le français (WMT'14).
Resumo:
To ensure quality of machined products at minimum machining costs and maximum machining effectiveness, it is very important to select optimum parameters when metal cutting machine tools are employed. Traditionally, the experience of the operator plays a major role in the selection of optimum metal cutting conditions. However, attaining optimum values each time by even a skilled operator is difficult. The non-linear nature of the machining process has compelled engineers to search for more effective methods to attain optimization. The design objective preceding most engineering design activities is simply to minimize the cost of production or to maximize the production efficiency. The main aim of research work reported here is to build robust optimization algorithms by exploiting ideas that nature has to offer from its backyard and using it to solve real world optimization problems in manufacturing processes.In this thesis, after conducting an exhaustive literature review, several optimization techniques used in various manufacturing processes have been identified. The selection of optimal cutting parameters, like depth of cut, feed and speed is a very important issue for every machining process. Experiments have been designed using Taguchi technique and dry turning of SS420 has been performed on Kirlosker turn master 35 lathe. Analysis using S/N and ANOVA were performed to find the optimum level and percentage of contribution of each parameter. By using S/N analysis the optimum machining parameters from the experimentation is obtained.Optimization algorithms begin with one or more design solutions supplied by the user and then iteratively check new design solutions, relative search spaces in order to achieve the true optimum solution. A mathematical model has been developed using response surface analysis for surface roughness and the model was validated using published results from literature.Methodologies in optimization such as Simulated annealing (SA), Particle Swarm Optimization (PSO), Conventional Genetic Algorithm (CGA) and Improved Genetic Algorithm (IGA) are applied to optimize machining parameters while dry turning of SS420 material. All the above algorithms were tested for their efficiency, robustness and accuracy and observe how they often outperform conventional optimization method applied to difficult real world problems. The SA, PSO, CGA and IGA codes were developed using MATLAB. For each evolutionary algorithmic method, optimum cutting conditions are provided to achieve better surface finish.The computational results using SA clearly demonstrated that the proposed solution procedure is quite capable in solving such complicated problems effectively and efficiently. Particle Swarm Optimization (PSO) is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. From the results it has been observed that PSO provides better results and also more computationally efficient.Based on the results obtained using CGA and IGA for the optimization of machining process, the proposed IGA provides better results than the conventional GA. The improved genetic algorithm incorporating a stochastic crossover technique and an artificial initial population scheme is developed to provide a faster search mechanism. Finally, a comparison among these algorithms were made for the specific example of dry turning of SS 420 material and arriving at optimum machining parameters of feed, cutting speed, depth of cut and tool nose radius for minimum surface roughness as the criterion. To summarize, the research work fills in conspicuous gaps between research prototypes and industry requirements, by simulating evolutionary procedures seen in nature that optimize its own systems.
Resumo:
Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.This dissertation contributes to an architecture oriented code validation, error localization and optimization technique assisting the embedded system designer in software debugging, to make it more effective at early detection of software bugs that are otherwise hard to detect, using the static analysis of machine codes. The focus of this work is to develop methods that automatically localize faults as well as optimize the code and thus improve the debugging process as well as quality of the code.Validation is done with the help of rules of inferences formulated for the target processor. The rules govern the occurrence of illegitimate/out of place instructions and code sequences for executing the computational and integrated peripheral functions. The stipulated rules are encoded in propositional logic formulae and their compliance is tested individually in all possible execution paths of the application programs. An incorrect sequence of machine code pattern is identified using slicing techniques on the control flow graph generated from the machine code.An algorithm to assist the compiler to eliminate the redundant bank switching codes and decide on optimum data allocation to banked memory resulting in minimum number of bank switching codes in embedded system software is proposed. A relation matrix and a state transition diagram formed for the active memory bank state transition corresponding to each bank selection instruction is used for the detection of redundant codes. Instances of code redundancy based on the stipulated rules for the target processor are identified.This validation and optimization tool can be integrated to the system development environment. It is a novel approach independent of compiler/assembler, applicable to a wide range of processors once appropriate rules are formulated. Program states are identified mainly with machine code pattern, which drastically reduces the state space creation contributing to an improved state-of-the-art model checking. Though the technique described is general, the implementation is architecture oriented, and hence the feasibility study is conducted on PIC16F87X microcontrollers. The proposed tool will be very useful in steering novices towards correct use of difficult microcontroller features in developing embedded systems.
Resumo:
Learning Disability (LD) is a general term that describes specific kinds of learning problems. It is a neurological condition that affects a child's brain and impairs his ability to carry out one or many specific tasks. The learning disabled children are neither slow nor mentally retarded. This disorder can make it problematic for a child to learn as quickly or in the same way as some child who isn't affected by a learning disability. An affected child can have normal or above average intelligence. They may have difficulty paying attention, with reading or letter recognition, or with mathematics. It does not mean that children who have learning disabilities are less intelligent. In fact, many children who have learning disabilities are more intelligent than an average child. Learning disabilities vary from child to child. One child with LD may not have the same kind of learning problems as another child with LD. There is no cure for learning disabilities and they are life-long. However, children with LD can be high achievers and can be taught ways to get around the learning disability. In this research work, data mining using machine learning techniques are used to analyze the symptoms of LD, establish interrelationships between them and evaluate the relative importance of these symptoms. To increase the diagnostic accuracy of learning disability prediction, a knowledge based tool based on statistical machine learning or data mining techniques, with high accuracy,according to the knowledge obtained from the clinical information, is proposed. The basic idea of the developed knowledge based tool is to increase the accuracy of the learning disability assessment and reduce the time used for the same. Different statistical machine learning techniques in data mining are used in the study. Identifying the important parameters of LD prediction using the data mining techniques, identifying the hidden relationship between the symptoms of LD and estimating the relative significance of each symptoms of LD are also the parts of the objectives of this research work. The developed tool has many advantages compared to the traditional methods of using check lists in determination of learning disabilities. For improving the performance of various classifiers, we developed some preprocessing methods for the LD prediction system. A new system based on fuzzy and rough set models are also developed for LD prediction. Here also the importance of pre-processing is studied. A Graphical User Interface (GUI) is designed for developing an integrated knowledge based tool for prediction of LD as well as its degree. The designed tool stores the details of the children in the student database and retrieves their LD report as and when required. The present study undoubtedly proves the effectiveness of the tool developed based on various machine learning techniques. It also identifies the important parameters of LD and accurately predicts the learning disability in school age children. This thesis makes several major contributions in technical, general and social areas. The results are found very beneficial to the parents, teachers and the institutions. They are able to diagnose the child’s problem at an early stage and can go for the proper treatments/counseling at the correct time so as to avoid the academic and social losses.
Resumo:
Packaging is important not only in extending the shellife of fish and fishery products but also improving their marketability. In the recent years, significant development have taken place in the packaging industry. During the past decade in India, there is almost a packaging revolution with the availability of variety packaging materials, thus generating better packaging consciousness in other producer/manufacturing industries. But unfortunately, such realisation is not forthcoming in the fisheries sector and packaging techniques for local and export trade continues to be on traditional lines with their inherent drawbacks and limitations. Better packaging ensures improved quality and presentation of the products and ensures higher returns to the producer. Among several packaging materials used in fishery industry, ISI specifications had been formulated only for corrugated fibre board boxes for export of seafoods and froglegs. This standard was formulated before containersiation came into existance in the export of marine products. Before containerisation, the standards were stringent in view of the rough handling, transportation and storage. Two of the common defects reported in the master cartons exported from India are low mechanical strength and tendency to get wet. They are weakened by the deposits of moisture caused by temperature fluctuations during loading, unloading and other handling stages. It is necessary to rectify the above defects in packaging aquatic products and hence in the present study extensive investigations are carried out to find out the reasons for the damage of master cartons, to evolve code of practice for the packaging oi frozen shrimp for exports, development of alternative style of packaging for the shipping container, development of suitable consumer packaging materials for fish soup powder, cured dried mackeral, fish pickles in oil and frozen shrimp. For the development of suitable packaging materials, it is absolutely essential to know the properties of packaging materials, effect of different packaging materials on theirshelf life and their suitability for food contact applications.
Resumo:
The properties of synthetic fibres vary with thc inherent physical characteristics of the basic raw materials used mode of preparation of yarns and method of construction of twines. Since the synthetic fibres as maufactured from polymers which are synthesized from simple chemical units, the qualities of man-made fibres can he influenced by the process of manufacture and certain modifications can even be introduced at the processing stage to meet any specific requirement to a certain extent. Hence, an elaborate study of the properties of fish not twines produced has been taken up with a view to determining their suitability for various types of fishing gear with particular reference to conditions prevailing in India.
Resumo:
Treating e-mail filtering as a binary text classification problem, researchers have applied several statistical learning algorithms to email corpora with promising results. This paper examines the performance of a Naive Bayes classifier using different approaches to feature selection and tokenization on different email corpora