898 resultados para mHealth Salute Mobile HealthCare Strategia Aziendale
Resumo:
Healthcare information systems have the potential to enhance productivity, lower costs, and reduce medication errors by automating business processes. However, various issues such as system complexity and system abilities in a relation to user requirements as well as rapid changes in business needs have an impact on the use of these systems. In many cases failure of a system to meet business process needs has pushed users to develop alternative work processes (workarounds) to fill this gap. Some research has been undertaken on why users are motivated to perform and create workarounds. However, very little research has assessed the consequences on patient safety. Moreover, the impact of performing these workarounds on the organisation and how to quantify risks and benefits is not well analysed. Generally, there is a lack of rigorous understanding and qualitative and quantitative studies on healthcare IS workarounds and their outcomes. This project applies A Normative Approach for Modelling Workarounds to develop A Model of Motivation, Constraints, and Consequences. It aims to understand the phenomenon in-depth and provide guidelines to organisations on how to deal with workarounds. Finally the method is demonstrated on a case study example and its relative merits discussed.
Resumo:
In order to improve the quality of healthcare services, the integrated large-scale medical information system is needed to adapt to the changing medical environment. In this paper, we propose a requirement driven architecture of healthcare information system with hierarchical architecture. The system operates through the mapping mechanism between these layers and thus can organize functions dynamically adapting to user’s requirement. Furthermore, we introduce the organizational semiotics methods to capture and analyze user’s requirement through ontology chart and norms. Based on these results, the structure of user’s requirement pattern (URP) is established as the driven factor of our system. Our research makes a contribution to design architecture of healthcare system which can adapt to the changing medical environment.
Resumo:
In order to best utilize the limited resource of medical resources, and to reduce the cost and improve the quality of medical treatment, we propose to build an interoperable regional healthcare systems among several levels of medical treatment organizations. In this paper, our approaches are as follows:(1) the ontology based approach is introduced as the methodology and technological solution for information integration; (2) the integration framework of data sharing among different organizations are proposed(3)the virtual database to realize data integration of hospital information system is established. Our methods realize the effective management and integration of the medical workflow and the mass information in the interoperable regional healthcare system. Furthermore, this research provides the interoperable regional healthcare system with characteristic of modularization, expansibility and the stability of the system is enhanced by hierarchy structure.
Resumo:
Mobile-to-mobile (M-to-M) communications are expected to play a crucial role in future wireless systems and networks. In this paper, we consider M-to-M multiple-input multiple-output (MIMO) maximal ratio combining system and assess its performance in spatially correlated channels. The analysis assumes double-correlated Rayleigh-and-Lognormal fading channels and is performed in terms of average symbol error probability, outage probability, and ergodic capacity. To obtain the receive and transmit spatial correlation functions needed for the performance analysis, we used a three-dimensional (3D) M-to-M MIMO channel model, which takes into account the effects of fast fading and shadowing. The expressions for the considered metrics are derived as a function of the average signal-to-noise ratio per receive antenna in closed-form and are further approximated using the recursive adaptive Simpson quadrature method. Numerical results are provided to show the effects of system parameters, such as distance between antenna elements, maximum elevation angle of scatterers, orientation angle of antenna array in the x–y plane, angle between the x–y plane and the antenna array orientation, and degree of scattering in the x–y plane, on the system performance. Copyright © 2011 John Wiley & Sons, Ltd.
Resumo:
In this paper, we consider multiple-input multiple- output (MIMO) maximal ratio combining (MRC) systems and assess the system performance in terms of average symbol error probability (SEP), outage probability and ergodic capacity in double-correlated Rayleigh-and-Lognormal fading channels. In order to derive the receive and transmit correlation functions needed for the performance analysis, a three-dimensional (3D) MIMO mobile-to-mobile (M-to-M) channel model, which takes into account the effects of fast fading and shadowing is used. Numerical results are provided to show the effects of system parameters, such as maximum elevation angle of scatterers, orientation angle of antenna array in the x-y plane, angle between x-y plane and the antenna array orientation, and degree of scattering in the x-y plane, on the system performance.
Resumo:
Background Staphylococcus aureus is a major cause of healthcare associated mortality, but like many important bacterial pathogens, it is a common constituent of the normal human body flora. Around a third of healthy adults are carriers. Recent evidence suggests that evolution of S. aureus during nasal carriage may be associated with progression to invasive disease. However, a more detailed understanding of within-host evolution under natural conditions is required to appreciate the evolutionary and mechanistic reasons why commensal bacteria such as S. aureus cause disease. Therefore we examined in detail the evolutionary dynamics of normal, asymptomatic carriage. Sequencing a total of 131 genomes across 13 singly colonized hosts using the Illumina platform, we investigated diversity, selection, population dynamics and transmission during the short-term evolution of S. aureus. Principal Findings We characterized the processes by which the raw material for evolution is generated: micro-mutation (point mutation and small insertions/deletions), macro-mutation (large insertions/deletions) and the loss or acquisition of mobile elements (plasmids and bacteriophages). Through an analysis of synonymous, non-synonymous and intergenic mutations we discovered a fitness landscape dominated by purifying selection, with rare examples of adaptive change in genes encoding surface-anchored proteins and an enterotoxin. We found evidence for dramatic, hundred-fold fluctuations in the size of the within-host population over time, which we related to the cycle of colonization and clearance. Using a newly-developed population genetics approach to detect recent transmission among hosts, we revealed evidence for recent transmission between some of our subjects, including a husband and wife both carrying populations of methicillin-resistant S. aureus (MRSA). Significance This investigation begins to paint a picture of the within-host evolution of an important bacterial pathogen during its prevailing natural state, asymptomatic carriage. These results also have wider significance as a benchmark for future systematic studies of evolution during invasive S. aureus disease.
Resumo:
Healthcare organizations are known for their complex and intense information environment. Healthcare information is facilitated via heterogeneous information systems or paper-based sources. Access to the right information under increasing time pressure is extremely challenging. This paper proposes an information architecture for healthcare organizations. It facilitates the provision of the right information to the right person in the right place and time tailored to their requirements. It adapts an abductive reasoning research approach. Organizational semiotics serves as its theoretical underpinning, guiding the data collection process through direct observation in the ophthalmology outpatient clinics of a UK hospital. It results the norm and information objects that form the information architecture. This is modeled by Archimate. The contribution of the information architecture can be seen from organizational, social and technical perspective. It clearly shows how information is facilitated within a healthcare organization, reducing duplicated data entry, and guiding the future technological implementation.
Resumo:
We have extensively evaluated the response of cloud-base drizzle rate (Rcb; mm day–1) in warm clouds to liquid water path (LWP; g m–2) and to cloud condensation nuclei (CCN) number concentration (NCCN; cm–3), an aerosol proxy. This evaluation is based on a 19-month long dataset of Doppler radar, lidar, microwave radiometers and aerosol observing systems from the Atmospheric Radiation Measurement (ARM) Mobile Facility deployments at the Azores and in Germany. Assuming 0.55% supersaturation to calculate NCCN, we found a power law , indicating that Rcb decreases by a factor of 2–3 as NCCN increases from 200 to 1000 cm–3 for fixed LWP. Additionally, the precipitation susceptibility to NCCN ranges between 0.5 and 0.9, in agreement with values from simulations and aircraft measurements. Surprisingly, the susceptibility of the probability of precipitation from our analysis is much higher than that from CloudSat estimates, but agrees well with simulations from a multi-scale high-resolution aerosol-climate model. Although scale issues are not completely resolved in the intercomparisons, our results are encouraging, suggesting that it is possible for multi-scale models to accurately simulate the response of LWP to aerosol perturbations.
Resumo:
OBJECTIVE: The aim of this study was to compare the knowledge and views of nursing staff on both acute elderly care and rehabilitation wards regarding elderly persons' oral care with that of carers in nursing homes. SUBJECTS: One hundred nurses working on acute, sub-acute and rehabilitation wards for elderly people (Group 1) and 75 carers in nursing homes (Group 2) were surveyed. DESIGN: A semi-structured questionnaire. RESULTS: Similar percentages of each group of nurses were registered with a dentist (86% and 88% respectively), although more hospital-based nurses were anxious about dental treatment compared with the nursing home group (40% and 28% respectively). More carers in nursing homes gave regular advice about oral care than the hospital-based nurses (54% and 43% respectively). Eighteen per cent of each group thought that edentulous individuals did not require regular oral care. Eighty-five per cent of hospital-based nurses and 95% of nursing home carers incorrectly thought that dentures were 'free' on the NHS. Although trends were observed between the two groups, no comparisons were statistically significant (Chi-square; level p < 0.05). CONCLUSIONS: Deficiencies exist in the knowledge of health care workers both in hospital and in the community setting, although the latter were less knowledgeable but more likely to give advice to older people.
Resumo:
Smart healthcare is a complex domain for systems integration due to human and technical factors and heterogeneous data sources involved. As a part of smart city, it is such a complex area where clinical functions require smartness of multi-systems collaborations for effective communications among departments, and radiology is one of the areas highly relies on intelligent information integration and communication. Therefore, it faces many challenges regarding integration and its interoperability such as information collision, heterogeneous data sources, policy obstacles, and procedure mismanagement. The purpose of this study is to conduct an analysis of data, semantic, and pragmatic interoperability of systems integration in radiology department, and to develop a pragmatic interoperability framework for guiding the integration. We select an on-going project at a local hospital for undertaking our case study. The project is to achieve data sharing and interoperability among Radiology Information Systems (RIS), Electronic Patient Record (EPR), and Picture Archiving and Communication Systems (PACS). Qualitative data collection and analysis methods are used. The data sources consisted of documentation including publications and internal working papers, one year of non-participant observations and 37 interviews with radiologists, clinicians, directors of IT services, referring clinicians, radiographers, receptionists and secretary. We identified four primary phases of data analysis process for the case study: requirements and barriers identification, integration approach, interoperability measurements, and knowledge foundations. Each phase is discussed and supported by qualitative data. Through the analysis we also develop a pragmatic interoperability framework that summaries the empirical findings and proposes recommendations for guiding the integration in the radiology context.
Resumo:
Background. Falls and fear of falling present a major risk to older people as both can affect their quality of life and independence. Mobile assistive technologies (AT) fall detection devices may maximise the potential for older people to live independently for as long as possible within their own homes by facilitating early detection of falls. Aims. To explore the experiences and perceptions of older people and their carers as to the potential of a mobile falls detection AT device. Methods. Nine focus groups with 47 participants including both older people with a range of health conditions and their carers. Interviews were audio recorded, transcribed verbatim, and thematically analysed. Results. Four key themes were identified relating to participants’ experiences and perceptions of falling and the potential impact of a mobile falls detector: cause of falling, falling as everyday vulnerability, the environmental context of falling, and regaining confidence and independence by having a mobile falls detector. Conclusion. The perceived benefits of a mobile falls detector may differ between older people and their carers. The experience of falling has to be taken into account when designing mobile assistive technology devices as these may influence perceptions of such devices and how older people utilise them.
Resumo:
In this paper, we investigate the possibility to control a mobile robot via a sensory-motory coupling utilizing diffusion system. For this purpose, we implemented a simulation of the diffusion process of chemicals and the kinematics of the mobile robot. In comparison to the original Braitenberg vehicle in which sensorymotor coupling is tightly realised by hardwiring, our system employs the soft coupling. The mobile robot has two sets of independent sensory-motor unit, two sensors are implemented in front and two motors on each side of the robot. The framework used for the sensory-motor coupling was such that 1) Place two electrodes in the medium 2) Drop a certain amount of Chemical U and V related to the distance to the walls and the intensity of the light 3) Place other two electrodes in the medium 4) Measure the concentration of Chemical U and V to actuate the motors on both sides of the robot. The environment was constructed with four surrounding walls and a light source located at the center. Depending on the design parameters and initial conditions, the robot was able to successfully avoid the wall and light. More interestingly, the diffusion process in the sensory-motor coupling provided the robot with a simple form of memory which would not have been possible with a control framework based on a hard-wired electric circuit.
Resumo:
The concept of being ‘patient-centric’ is a challenge to many existing healthcare service provision practices. This paper focuses on the issue of referrals, where multiple stakeholders, i.e. general practitioners and patients, are encouraged to make a consensual decision based on patient needs. In this paper, we present an ontology-enabled healthcare service provision, which facilitates both patients and GPs in jointly deciding upon the referral decision. In the healthcare service provision model, we define three types of profile, which represents different stakeholders’ requirements. This model also comprises of a set of healthcare service discovery processes: articulating a service need, matching the need with the healthcare service offerings, and deciding on a best-fit service for acceptance. As a result, the healthcare service provision can carry out coherent analysis using personalised information and iterative processes that deal with requirements change over time.