951 resultados para lung hypoplasia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Increased levels of 8-isoprostane were found in various human lung diseases suggesting 8-isoprostane as a marker of pulmonary oxidative stress in vivo. The exact role in pediatric lung diseases has not been defined yet. The goal of this study was to clarify the role of 8-isoprostane in nasally exhaled breath condensate as possible marker of oxidative stress in children with different lung diseases. METHODS: Levels of 8-isoprostane were measured in nasally exhaled breath condensate of 29 cystic fibrosis patients, 19 children with a history of wheezing episodes, 8 infants with acute respiratory tract infection and 53 healthy subjects using a specific enzyme immunoassay. RESULTS: Levels of 8-isoprostane did neither discriminate between different disease groups nor correlate with lung function in cystic fibrosis patients. CONCLUSIONS: Levels of 8-isoprostane in nasally exhaled breath condensate do not reflect oxidative stress in children with different lung diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interleukin-8 (IL-8) activates neutrophils via the chemokine receptors CXCR1 and CXCR2. However, the airways of individuals with cystic fibrosis are frequently colonized by bacterial pathogens, despite the presence of large numbers of neutrophils and IL-8. Here we show that IL-8 promotes bacterial killing by neutrophils through CXCR1 but not CXCR2. Unopposed proteolytic activity in the airways of individuals with cystic fibrosis cleaved CXCR1 on neutrophils and disabled their bacterial-killing capacity. These effects were protease concentration-dependent and also occurred to a lesser extent in individuals with chronic obstructive pulmonary disease. Receptor cleavage induced the release of glycosylated CXCR1 fragments that were capable of stimulating IL-8 production in bronchial epithelial cells via Toll-like receptor 2. In vivo inhibition of proteases by inhalation of alpha1-antitrypsin restored CXCR1 expression and improved bacterial killing in individuals with cystic fibrosis. The cleavage of CXCR1, the functional consequences of its cleavage, and the identification of soluble CXCR1 fragments that behave as bioactive components represent a new pathophysiologic mechanism in cystic fibrosis and other chronic lung diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the current study, the contribution of the major angiogenic mechanisms, sprouting and intussusception, to vascular development in the avian lung has been demonstrated. Sprouting guides the emerging vessels to form the primordial vascular plexus, which successively surrounds and encloses the parabronchi. Intussusceptive angiogenesis has an upsurge from embryonic day 15 (E15) and contributes to the remarkably rapid expansion of the capillary plexus. Increased blood flow stimulates formation of pillars (the archetype of intussusception) in rows, their subsequent fusion and concomitant delineation of slender, solitary vascular entities from the disorganized meshwork, thus crafting the organ-specific angioarchitecture. Morphometric investigations revealed that sprouting is preponderant in the early period of development with a peak at E15 but is subsequently supplanted by intussusceptive angiogenesis by the time of hatching. Quantitative RT-PCR revealed that moderate levels of basic FGF (bFGF) and VEGF-A were maintained during the sprouting phase while PDGF-B remained minimal. All three factors were elevated during the intussusceptive phase. Immunohistoreactivity for VEGF was mainly in the epithelial cells, whereas bFGF was confined to the stromal compartment. Temporospatial interplay between sprouting and intussusceptive angiogenesis fabricates a unique vascular angioarchitecture that contributes to the establishment of a highly efficient gas exchange system characteristic of the avian lung.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulmonary surfactant prevents alveolar collapse via reduction of surface tension. In contrast to human neonates, rats are born with saccular lungs. Therefore, rat lungs serve as a model for investigation of the surfactant system during postnatal alveolar formation. We hypothesized that this process is associated with characteristic structural and biochemical surfactant alterations. We aimed to discriminate changes related to alveolarization from those being either invariable or follow continuous patterns of postnatal changes. Secreted active (mainly tubular myelin (tm)) and inactive (unilamellar vesicles (ulv)) surfactant subtypes as well as intracellular surfactant (lamellar bodies (lb)) in type II pneumocytes (PNII) were quantified before (day (d) 1), during (d 7), at the end of alveolarization (d 14), and after completion of lung maturation (d 42) using electron microscopic methods supplemented by biochemical analyses (phospholipid quantification, immunoblotting for SP-A). Immunoelectron microscopy determined the localization of surfactant protein A (SP-A). (1) At d 1 secreted surfactant was increased relative to d 7-42 and then decreased significantly. (2) Air spaces of neonatal lungs comprised lower fractions of tm and increased ulv, which correlated with low SP-A concentrations in lung lavage fluid (LLF) and increased respiratory rates, respectively. (3) Alveolarization (d 7-14) was associated with decreasing PNII size although volume and sizes of Lb continuously increased. (4) The volume fractions of Lb correlated well with the pool sizes of phospholipids in lavaged lungs. Our study emphasizes differential patterns of developmental changes of the surfactant system relative to postnatal alveolarization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major aim in lung transplantation is to prevent the loss of structural integrity due to ischemia and reperfusion (I/R) injury. Preservation solutions protect the lung against I/R injury to a variable extent. We compared the influence of two extracellular-type preservation solutions (Perfadex, or PX, and Celsior, or CE) on the morphological alterations induced by I/R. Pigs were randomly assigned to sham (n = 4), PX (n = 5), or CE (n = 2) group. After flush perfusion with PX or CE, donor lungs were excised and stored for 27 hr at 4 degrees C. The left donor lung was implanted into the recipient, reperfused for 6 hr, and, afterward, prepared for light and electron microscopy. Intra-alveolar, septal, and peribronchovascular edema as well as the integrity of the blood-air barrier were determined stereologically. Intra-alveolar edema was more pronounced in CE (219.80 +/- 207.55 ml) than in PX (31.46 +/- 15.75 ml). Peribronchovascular (sham: 13.20 +/- 4.99 ml; PX: 15.57 +/- 5.53 ml; CE: 31.56 +/- 5.78 ml) and septal edema (thickness of alveolar septal interstitium, sham: 98 +/- 33 nm; PX: 84 +/- 8 nm; CE: 249 +/- 85 nm) were only found in CE. The blood-air barrier was similarly well preserved in sham and PX but showed larger areas of swollen and fragmented epithelium or endothelium in CE. The present study shows that Perfadex effectively prevents intra-alveolar, septal, and peribronchovascular edema formation as well as injury of the blood-air barrier during I/R. Celsior was not effective in preserving the lung from morphological I/R injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Optimal allograft protection is essential in lung transplantation to reduce postoperative organ dysfunction. Although intravenous prostanoids are routinely used to ameliorate reperfusion injury, the latest evidence suggests a similar efficacy of inhaled prostacyclin. Therefore, we compared donor lung-pretreatment using inhaled lioprost (Ventavis) with the commonly used intravenous technique. METHODS: Five pig lungs were each preserved with Perfadex and stored for 27 hours without (group 1) or with (group-2, 100 prior aerosolized of iloprost were (group 3) or iloprost (IV). Following left lung transplantation, hemodynamics, Po(2)/F(i)o(2), compliance, and wet-to-dry ratio were monitored for 6 hours and compared to sham controls using ANOVA analysis with repeated measures. RESULTS: The mortality was 100% in group 3. All other animals survived (P < .001). Dynamic compliance and PVR were superior in the endobronchially pretreated iloprost group as compared with untreated organs (P < .05), whereas oxygenation was comparable overall W/D-ratio revealed significantly lower lung water in group 2 (P = .027) compared with group 3. CONCLUSION: Preischemic alveolar deposition of iloprost is superior to IV pretreatment as reflected by significantly improved allograft function. This strategy offers technique to optimize pulmonary preservation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Repeated bronchoalveolar lavage (BAL) has been used in animals to induce surfactant depletion and to study therapeutical interventions of subsequent respiratory insufficiency. Intratracheal administration of surface active agents such as perfluorocarbons (PFC) can prevent the alveolar collapse in surfactant depleted lungs. However, it is not known how BAL or subsequent PFC administration affect the intracellular and intraalveolar surfactant pool. METHODS: Male wistar rats were surfactant depleted by BAL and treated for 1 hour by conventional mechanical ventilation (Lavaged-Gas, n = 5) or partial liquid ventilation with PF 5080 (Lavaged-PF5080, n = 5). For control, 10 healthy animals with gas (Healthy-Gas, n = 5) or PF5080 filled lungs (Healthy-PF5080, n = 5) were studied. A design-based stereological approach was used for quantification of lung parenchyma and the intracellular and intraalveolar surfactant pool at the light and electron microscopic level. RESULTS: Compared to Healthy-lungs, Lavaged-animals had more type II cells with lamellar bodies in the process of secretion and freshly secreted lamellar body-like surfactant forms in the alveoli. The fraction of alveolar epithelial surface area covered with surfactant and total intraalveolar surfactant content were significantly smaller in Lavaged-animals. Compared with Gas-filled lungs, both PF5080-groups had a significantly higher total lung volume, but no other differences. CONCLUSION: After BAL-induced alveolar surfactant depletion the amount of intracellularly stored surfactant is about half as high as in healthy animals. In lavaged animals short time liquid ventilation with PF5080 did not alter intra- or extracellular surfactant content or subtype composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to the current view, the formation of new alveolar septa from preexisting ones ceases due to the reduction of a double- to a single-layered capillaries network inside the alveolar septa (microvasculature maturation postnatal days 14-21 in rats). We challenged this view by measuring stereologically the appearance of new alveolar septa and by studying the alveolar capillary network in three-dimensional (3-D) visualizations obtained by high-resolution synchrotron radiation X-ray tomographic microscopy. We observed that new septa are formed at least until young adulthood (rats, days 4-60) and that roughly half of the new septa are lifted off of mature septa containing single-layered capillary networks. At the basis of newly forming septa, we detected a local duplication of the capillary network. We conclude that new alveoli may be formed in principle at any time and at any location inside the lung parenchyma and that lung development continues into young adulthood. We define two phases during developmental alveolarization. Phase one (days 4-21), lifting off of new septa from immature preexisting septa, and phase two (day 14 through young adulthood), formation of septa from mature preexisting septa. Clinically, our results ask for precautions using drugs influencing structural lung development during both phases of alveolarization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: During sleep, ventilation and functional residual capacity (FRC) decrease slightly. This study addresses regional lung aeration during wakefulness and sleep. METHODS: Ten healthy subjects underwent spirometry awake and with polysomnography, including pulse oximetry, and also CT when awake and during sleep. Lung aeration in different lung regions was analyzed. Another three subjects were studied awake to develop a protocol for dynamic CT scanning during breathing. RESULTS: Aeration in the dorsal, dependent lung region decreased from a mean of 1.14 +/- 0.34 mL (+/- SD) of gas per gram of lung tissue during wakefulness to 1.04 +/- 0.29 mL/g during non-rapid eye movement (NREM) sleep (- 9%) [p = 0.034]. In contrast, aeration increased in the most ventral, nondependent lung region, from 3.52 +/- 0.77 to 3.73 +/- 0.83 mL/g (+ 6%) [p = 0.007]. In one subject studied during rapid eye movement (REM) sleep, aeration decreased from 0.84 to 0.65 mL/g (- 23%). The fall in dorsal lung aeration during sleep correlated to awake FRC (R(2) = 0.60; p = 0.008). Airway closure, measured awake, occurred near and sometimes above the FRC level. Ventilation tended to be larger in dependent, dorsal lung regions, both awake and during sleep (upper region vs lower region, 3.8% vs 4.9% awake, p = 0.16, and 4.5% vs 5.5% asleep, p = 0.09, respectively). CONCLUSIONS: Aeration is reduced in dependent lung regions and increased in ventral regions during NREM and REM sleep. Ventilation was more uniformly distributed between upper and lower lung regions than has previously been reported in awake, upright subjects. Reduced respiratory muscle tone and airway closure are likely causative factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Neurally adjusted ventilatory assist uses the electrical activity of the diaphragm (EAdi)-a pneumatically-independent signal-to control the timing and pressure of the ventilation delivered, and should not be affected by leaks. The aim of this study was to evaluate whether NAVA can deliver assist in synchrony and proportionally to EAdi after extubation, with a leaky non-invasive interface. DESIGN AND SETTING: Prospective, controlled experimental study in an animal laboratory. ANIMALS: Ten rabbits, anesthetized, mechanically ventilated. INTERVENTIONS: Following lung injury, the following was performed in sequential order: (1) NAVA delivered via oral endotracheal tube with PEEP; (2) same as (1) without PEEP; (3) non-invasive NAVA at unchanged NAVA level and no PEEP via a single nasal prong; (4) no assist; (5) non-invasive NAVA at progressively increasing NAVA levels. MEASUREMENTS AND RESULTS: EAdi, esophageal pressure, blood gases and hemodynamics were measured during each condition. For the same NAVA level, the mean delivered pressure above PEEP increased from 3.9[Symbol: see text]+/-[Symbol: see text]1.4[Symbol: see text]cmH(2)O (intubated) to 7.5[Symbol: see text]+/-[Symbol: see text]3.8[Symbol: see text]cmH(2)O (non-invasive) (p[Symbol: see text]<[Symbol: see text]0.05) because of increased EAdi. No changes were observed in PaO(2) and PaCO(2). Increasing the NAVA level fourfold during non-invasive NAVA restored EAdi and esophageal pressure swings to pre-extubation levels. Triggering (106[Symbol: see text]+/-[Symbol: see text]20[Symbol: see text]ms) and cycling-off delays (40[Symbol: see text]+/-[Symbol: see text]21[Symbol: see text]ms) during intubation were minimal and not worsened by the leak (95[Symbol: see text]+/-[Symbol: see text]13[Symbol: see text]ms and 33[Symbol: see text]+/-[Symbol: see text]9[Symbol: see text]ms, respectively). CONCLUSION: NAVA can be effective in delivering non-invasive ventilation even when the interface with the patient is excessively leaky, and can unload the respiratory muscles while maintaining synchrony with the subject's demand.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determining whether hypoplasia of a coronary artery has caused or contributed to death is often complicated by an absence of histologic evidence of myocardial ischemia in the area of the heart supplied by the affected artery and also by the lack of data for assessing coronary artery size at autopsy. A 45-year-old woman is reported who collapsed and died and who was found at autopsy to have a dominant, small-caliber, right coronary artery, with acute and chronic ischemic changes in the posterior interventricular septum supplied by the diminutive vessel. This case provides evidence that small-caliber coronary arteries may be associated with a lethal outcome. Given the difficulties that may occur in determining whether there is a causal link between small coronary artery caliber and death, it is possible that this may be an underdiagnosed cause of sudden cardiac death, rather than a coincidental finding of minimal significance.