892 resultados para lossy compression
Resumo:
Test results reported on several natural sensitive soils show significant anisotropy of the yield curves, which are generally oriented along the coefficient of earth pressure at rest (K-0) axis. An attempt is made in this paper to explain the anisotropy in yielding from microstructural considerations. An elliptic pore, with particle domains aligned along the periphery of the pore, and with the major axis of the pore being oriented along the direction of the in situ major principal stress, is chosen as the unit of microstructure. An analysis of forces at the interdomain contacts around the ellipse is carried out with reference to experimentally determined yield stress conditions of one soil, and a yield criteria is defined. The analysis, with the proposed yield criteria, enables one to define the complete yield curve for any other soil from the results of only two tests (one constant eta compression test with eta close to eta(K?0), where eta is the stress ratio (= q/p) and eta(K?0) is the stress ratio corresponding to anisotropic K-0 compression, and another undrained shear test). Predicted yield curves are compared with experimental yield curves of several soils reported in the literature.
Resumo:
Friction has an important influence in metal forming operations, as it contributes to the success or otherwise of the process. In the present investigation, the effect of friction on metal forming was studied by simulating compression tests on cylindrical Al-Mg alloy using the finite element method (FEM) technique. Three kinds of compression tests were considered wherein a constant coefficient of friction was employed at the upper die-work-piece interface. However, the coefficient of friction between the lower die-work-piece interfaces was varied in the tests. The simulation results showed that a difference in metal flow occurs near the interfaces owing to the differences in the coefficient of friction. It was concluded that the variations in the coefficient of friction between the dies and the work-piece directly affect the stress distribution and shape of the work-piece, having implications on the microstructure of the material being processed.
Resumo:
The hot deformation behavior of hot isostatically pressed (HIPd) P/M IN-100 superalloy has been studied in the temperature range 1000-1200 degrees C and strain rate range 0.0003-10 s(-1) using hot compression testing. A processing map has been developed on the basis of these data and using the principles of dynamic materials modelling. The map exhibited three domains: one at 1050 degrees C and 0.01 s(-1), with a peak efficiency of power dissipation of approximate to 32%, the second at 1150 degrees C and 10 s(-1), with a peak efficiency of approximate to 36% and the third at 1200 degrees C and 0.1 s(-1), with a similar efficiency. On the basis of optical and electron microscopic observations, the first domain was interpreted to represent dynamic recovery of the gamma phase, the second domain represents dynamic recrystallization (DRX) of gamma in the presence of softer gamma', while the third domain represents DRX of the gamma phase only. The gamma' phase is stable upto 1150 degrees C, gets deformed below this temperature and the chunky gamma' accumulates dislocations, which at larger strains cause cracking of this phase. At temperatures lower than 1080 degrees C and strain rates higher than 0.1 s(-1), the material exhibits flow instability, manifested in the form of adiabatic shear bands. The material may be subjected to mechanical processing without cracking or instabilities at 1200 degrees C and 0.1 s(-1), which are the conditions for DRX of the gamma phase.
Resumo:
The standard curve-fitting methods, Casagrande's log t method and Taylor's root t method, for the determination of the coefficient of consolidation use the later part of the consolidation curve and are influenced by secondary compression effects. Literature shows that secondary compression is concurrent with primary consolidation and that its effect is to decrease the value of the coefficient of consolidation. If the early part of the time-compression data is used, the values obtained will be less influenced by secondary compression effects. A method that uses the early part of the log t plot is proposed in this technical note. As the influence of secondary compression is reduced, the value obtained by this method is greater than that yielded by both the standard methods. The permeability values computed from C-v (obtained from the proposed method) rue more in agreement with the measured values than the standard methods showing that the effects of secondary compression are minimized. Time-compression data for a shorter duration is sufficient for the determination of C-v if the coefficient of secondary compression is not required.
Resumo:
Based on Terzaghi's consolidation theory, percent of consolidation, U, versus the time factor, T, relationship for constant/linear excess pore water pressure distribution, it is possible to generate theoretical log10(H2/t) versus U curves where H is the length of the drainage path of a consolidating layer, and t is the time for different known values of the coefficient of consolidation, cν. A method has been developed wherein both the theoretical and experimental behavior of soils during consolidation can be simultaneously compared and studied on the same plot. The experimental log10(H2/t) versus U curves have been compared with the theoretical curves. The deviations of the experimental behavior from the theory are explained in terms of initial compression and secondary compression. Analysis of results indicates that the secondary compression essentially starts from about 60% consolidation. A simple procedure is presented for calculating the value of cv from the δ-t data using log10(H2/t) versus U plot.
Resumo:
The mesoscale simulation of a lamellar mesophase based on a free energy functional is examined with the objective of determining the relationship between the parameters in the model and molecular parameters. Attention is restricted to a symmetric lamellar phase with equal volumes of hydrophilic and hydrophobic components. Apart from the lamellar spacing, there are two parameters in the free energy functional. One of the parameters, r, determines the sharpness of the interface, and it is shown how this parameter can be obtained from the interface profile in a molecular simulation. The other parameter, A, provides an energy scale. Analytical expressions are derived to relate these parameters to r and A to the bending and compression moduli and the permeation constant in the macroscopic equation to the Onsager coefficient in the concentration diffusion equation. The linear hydrodynamic response predicted by the theory is verified by carrying out a mesoscale simulation using the lattice-Boltzmann technique and verifying that the analytical predictions are in agreement with simulation results. A macroscale model based on the layer thickness field and the layer normal field is proposed, and the relationship between the parameters in the macroscale model from the parameters in the mesoscale free energy functional is obtained.
Resumo:
Synchrotron-based high-pressure x-ray diffraction measurements indicate that compressibility, a fundamental materials property, can have a size-specific minimum value. The bulk modulus of nanocrystalline titania has a maximum at particle size of 15 nm. This can be explained by dislocation behavior because very high dislocation contents can be achieved when shear stress induced within nanoparticles counters the repulsion between dislocations. As particle size decreases, compression increasingly generates dislocation networks hardened by overlap of strain fields that shield intervening regions from external pressure. However, when particles become too small to sustain high dislocation concentrations, elastic stiffening declines. The compressibility has a minimum at intermediate sizes.
Resumo:
Tracheal cartilage has been widely regarded as a linear elastic material either in experimental studies or in analytic and numerical models. However, it has been recently demonstrated that, like other fiber-oriented biological tissues, tracheal cartilage is a nonlinear material, which displays higher strength in compression than in extension. Considering the nonlinearity requires a more complex theoretical frame work and costs more to simulate. This study aims to quantify the deviation due to the simplified treatment of the tracheal cartilage as a linear material. It also evaluates the improved accuracy gained by considering the nonlinearity. Pig tracheal rings were used to exam the mechanical properties of cartilage and muscular membrane. By taking into account the asymmetric shape of tracheal cartilage, the collapse behavior of complete rings was simulated, and the compliance of airway and stress in the muscular membrane were discussed. The results obtained were compared with those assuming linear mechanical properties. The following results were found: (1) Models based on both types of material properties give a small difference in representing collapse behavior; (2) regarding compliance, the relative difference is big, ranging from 10 to 40% under negative pressure conditions; and (3) the difference in determining stress in the muscular membrane is small too: <5%. In conclusion, treating tracheal cartilage as a linear material will not cause big deviations in representing the collapse behavior, and mechanical stress in the muscular part, but it will induce a big deviation in predicting the compliance, particularly when the transmural pressure is lower than -0.5 kPa. The results obtained in this study may be useful in both understanding the collapse behavior of trachea and in evaluating the error induced by the simplification of treating the tracheal cartilage as a linear elastic material.
Resumo:
The present work provides an insight into the dry sliding wear behavior of titanium based on synergy between tribo-oxidation and strain rate response. Pin-on-disc tribometer was used to characterize the friction and wear behavior of titanium pin in sliding contact with polycrystalline alumina disk under ambient and vacuum condition. The sliding speed was varied from 0.01 to 1.4 ms(-1), normal load was varied from 15.3 to 76 N and with a sliding distance of 1500 m. It was seen that dry sliding wear behavior of titanium was governed by combination of tribo-oxidation and strain rate response in near surface region of titanium. Strain rate response of titanium was recorded by conducting uni-axial compression tests at constant true strain rate of 100 s(-1) in the temperature range from 298 to 873 K. Coefficient of friction and wear rate were reduced with increased sliding speed from 0.01 to 1.0 ms(-1). This is attributed to the formation of in situ self lubricating oxide film (TiO) and reduction in the intensity of adiabatic shear band cracking in the near surface region. This trend was confirmed by performing series of dry sliding tests under vacuum condition of 2 x 10(-4) Torr. Characterization tools such as optical microscopy, scanning electron microscopy, and X-ray diffractometer provided evidence of such processes. These experimental findings can be applied to enhance the dry sliding wear behavior of titanium with proper choice of operating conditions such as sliding speed, normal load, and environment.
Experimental measurement of the mechanical properties of carotid atherothrombotic plaque fibrous cap
Resumo:
Eleven carotid atherothrombotic plaque samples were harvested from patients. Three samples that were highly calcified were discarded, while eight yielded results. The elastic properties of the material were estimated by fitting the measured indentation response to finite element simulations. The methodology was refined and its accuracy quantified using a synthetic rubber. The neo-Hookean form of the material model gave a good fit to the measured response of the tissue. The inferred shear modulus μ was found to be in the range 7-100 kPa, with a median value of 11 kPa. A review of published materials data showed a wide range of material properties for human atherothrombotic tissue. The effects of anisotropy and time dependency in these published results were highlighted. The present measurements were comparable to the static radial compression tests of Lee et al, 1991 [Structure-dependent dynamic behaviour of fibrous caps from human atherosclerotic plaques. Circulation 83, 1764-1770].
Resumo:
Background: Despite being the stiffest airway of the bronchial tree, the trachea undergoes significant deformation due to intrathoracic pressure during breathing. The mechanical properties of the trachea affect the flow in the airway and may contribute to the biological function of the lung. Method: A Fung-type strain energy density function was used to investigate the nonlinear mechanical behavior of tracheal cartilage. A bending test on pig tracheal cartilage was performed and a mathematical model for analyzing the deformation of tracheal cartilage was developed. The constants included in the strain energy density function were determined by fitting the experimental data. Result: The experimental data show that tracheal cartilage is a nonlinear material displaying higher strength in compression than in tension. When the compression forces varied from -0.02 to -0.03 N and from -0.03 to -0.04 N, the deformation ratios were 11.03±2.18% and 7.27±1.59%, respectively. Both were much smaller than the deformation ratios (20.01±4.49%) under tension forces of 0.02 to 0.01 N. The Fung-type strain energy density function can capture this nonlinear behavior very well, whilst the linear stress-strain relation cannot. It underestimates the stability of trachea by exaggerating the displacement in compression. This study may improve our understanding of the nonlinear behavior of tracheal cartilage and it may be useful for the future study on tracheal collapse behavior under physiological and pathological conditions.
Resumo:
Composite materials exhibiting different moduli in tension and in compression, commonly called as bimodular composites are being used in many engineering fields. A finite element analysis is carried out for small deflection static behavior of laminated curved beams of bi modulus materials for both solid and hollow circular cross-sections using an iterative procedure. The finite element has 16 d.o.f. and uses the displacement field in terms of first order Hermite in terpolation polynomials. The neutral surface, i.e. the locus of points having zero axial strain is found to vary drastically depending on the loading, lay up schemes and radius of curvature. As il lustrations, plots of the cross-sections of the ruled neutral-surface are presented for some of the investigated cases. Using this element a few problems of curved laminated beams of bimodulus materials are solved for both solid and hollow circular cross-sections.
Resumo:
Background Tarsal tunnel syndrome is classified as a focal compressive neuropathy of the posterior tibial nerve or one of its associated branches individually or collectively. The tunnel courses deep to fascia, the flexor retinaculum and within the abductor hallucis muscle of the foot/ankle. The condition is rare and regularly under-diagnosed leading to a range of symptoms affecting the plantar margins of the foot. There are many intervention strategies for treating tarsal tunnel syndrome with limited robust evidence to guide the clinical management of this condition. The role of conservative versus surgical interventions at various stages of the disease process remains unclear, and there is a need for a structured, step-wise approach in treating patients with this syndrome based on derived empirical evidence. This narrative review attempts to scrutinize the literature to date by clarifying initial presentation, investigations and definitive treatment for the purpose of assisting future informed clinical decision and prospective research endeavours. Process The literature searches that have been incorporated in compiling a rigorous review of this condition have included: the Cochrane Neuromuscular Group's Specialized Register (Cochrane Library 2013), the databases of EMBASE, AMED, MEDLINE, CINAHL, Physiotherapy evidence database (PEDRO), Biomed Central, Science Direct and Trip Database (1972 to the present). Reference listings of located articles were also searched and scrutinized. Authors and experts within the field of lower-limb orthopaedics were contacted to discuss applicable data. Subject-specific criteria searches utilizing the following key terms were performed across all databases: tarsal tunnel syndrome, tibial neuralgia, compression neuropathy syndromes, tibial nerve impingement, tarsal tunnel neuropathy, entrapment tibial nerve, posterior tibial neuropathy. These search strategies were modified with differing databases, adopting specific sensitivity-searching tools and functions unique to each. This search strategy identified 88 journal articles of relevance for this narrative literature review. Findings This literature review has appraised the clinical significance of tarsal tunnel syndrome, whilst assessing varied management interventions (non-surgical and surgical) for the treatment of this condition in both adults and children. According to our review, there is limited high-level robust evidence to guide and refine the clinical management of tarsal tunnel syndrome. Requirements for small-scaled randomized controlled trials in groups with homogenous aetiology are needed to analyse the effectiveness of specific treatment modalities. Conclusions It is necessary that further research endeavours be pursued for the clinical understanding, assessment and treatment of tarsal tunnel syndrome. Accordingly, a structured approach to managing patients who have been correctly diagnosed with this condition should be formulated on the basis of empirical evidence where possible.
Resumo:
The surface properties of solid state pharmaceutics are of critical importance. Processing modifies the surfaces and effects surface roughness, which influences the performance of the final dosage form in many different levels. Surface roughness has an effect on, e.g., the properties of powders, tablet compression and tablet coating. The overall goal of this research was to understand the surface structures of pharmaceutical surfaces. In this context the specific purpose was to compare four different analysing techniques (optical microscopy, scanning electron microscopy, laser profilometry and atomic force microscopy) in various pharmaceutical applications where the surfaces have quite different roughness scale. This was done by comparing the image and roughness analysing techniques using powder compacts, coated tablets and crystal surfaces as model surfaces. It was found that optical microscopy was still a very efficient technique, as it yielded information that SEM and AFM imaging are not able to provide. Roughness measurements complemented the image data and gave quantitative information about height differences. AFM roughness data represents the roughness of only a small part of the surface and therefore needs other methods like laser profilometer are needed to provide a larger scale description of the surface. The new developed roughness analysing method visualised surface roughness by giving detailed roughness maps, which showed local variations in surface roughness values. The method was able to provide a picture of the surface heterogeneity and the scale of the roughness. In the coating study, the laser profilometer results showed that the increase in surface roughness was largest during the first 30 minutes of coating when the surface was not yet fully covered with coating. The SEM images and the dispersive X-ray analysis results showed that the surface was fully covered with coating within 15 to 30 minutes. The combination of the different measurement techniques made it possible to follow the change of surface roughness and development of polymer coating. The optical imaging techniques gave a good overview of processes affecting the whole crystal surface, but they lacked the resolution to see small nanometer scale processes. AFM was used to visualize the nanoscale effects of cleaving and reveal the full surface heterogeneity, which underlies the optical imaging. Ethanol washing changed small (nanoscale) structure to some extent, but the effect of ethanol washing on the larger scale was small. Water washing caused total reformation of the surface structure at all levels.
Resumo:
Effective processing of powdered particles can facilitate powder handling and result in better drug product performance, which is of great importance in the pharmaceutical industry where the majority of active pharmaceutical ingredients (APIs) are delivered as solid dosage forms. The purpose of this work was to develop a new ultrasound-assisted method for particle surface modification and thin-coating of pharmaceutical powders. The ultrasound was used to produce an aqueous mist with or without a coating agent. By using the proposed technique, it was possible to decrease the interparticular interactions and improve rheological properties of poorly-flowing water-soluble powders by aqueous smoothing of the rough surfaces of irregular particles. In turn, hydrophilic polymer thin-coating of a hydrophobic substance diminished the triboelectrostatic charge transfer and improved the flowability of highly cohesive powder. To determine the coating efficiency of the technique, the bioactive molecule β-galactosidase was layered onto the surface of powdered lactose particles. Enzyme-treated materials were analysed by assaying the quantity of the reaction product generated during enzymatic cleavage of the milk sugar. A near-linear increase in the thickness of the drug layer was obtained during progressive treatment. Using the enzyme coating procedure, it was confirmed that the ultrasound-assisted technique is suitable for processing labile protein materials. In addition, this pre-treatment of milk sugar could be used to improve utilization of lactose-containing formulations for populations suffering from severe lactose intolerance. Furthermore, the applicability of the thin-coating technique for improving homogeneity of low-dose solid dosage forms was shown. The carrier particles coated with API gave rise to uniform distribution of the drug within the powder. The mixture remained homogeneous during further tabletting, whereas the reference physical powder mixture was subject to segregation. In conclusion, ultrasound-assisted surface engineering of pharmaceutical powders can be effective technology for improving formulation and performance of solid dosage forms such as dry powder inhalers (DPI) and direct compression products.