895 resultados para live feed


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In addition to plasma metabolites and hormones participating as humoral signals in the control of feed intake, oxidative metabolic processes in peripheral organs also generate signals to terminate feeding. Although the degree of oxidation over longer periods is relatively constant, recent work suggests that the periprandial pattern of fuel oxidation is involved in regulating feeding behavior in the bovine. However, the association between periprandial oxidative metabolism and feed intake of dairy cows has not yet been studied. Therefore, the aim of this study was to elucidate possible associations existing between single feed intake events and whole-body net fat and net carbohydrate oxidation as well as their relation to plasma metabolite concentrations. To this end, 4 late-lactating cows equipped with jugular catheters were kept in respiratory chambers with continuous and simultaneous recording of gas exchange and feed intake. Animals were fed ad libitum (AL) for 24h and then feed restricted (RE) to 50% of the previous AL intake for a further 24h. Blood samples were collected hourly to analyze β-hydroxybutyrate (BHBA), glucose, nonesterified fatty acids (NEFA), insulin, and acylated ghrelin concentrations. Cross-correlation analysis revealed an offset ranging between 30 and 42 min between the maximum of a feed intake event and the lowest level of postprandial net fat oxidation (FOX(net)) and the maximum level of postprandial net carbohydrate oxidation (COX(net)), respectively. During the AL period, FOX(net) did not increase above -0.2g/min, whereas COX(net) did not decrease below 6g/min before the start of the next feed intake event. A strong inverse cross-correlation was obtained between COX(net) and plasma glucose concentration. Direct cross-correlations were observed between COXnet and insulin, between heat production and BHBA, between insulin and glucose, and between BHBA and ghrelin. We found no cross-correlation between FOX(net) and NEFA. During RE, FOX(net) increased with an exponential slope, exceeded the threshold of -0.2g/min as indicated by increasing plasma NEFA concentrations, and approached a maximum rate of 0.1g/min, whereas COX(net) decayed in an exponential manner, approaching a minimal COX(net) rate of about 2.5 g/min in all cows. Our novel findings suggest that, in late-lactating cows, postprandial increases in metabolic oxidative processes seem to signal suppression of feed intake, whereas preprandially an accelerated FOX(net) rate and a decelerated COX(net) rate initiate feed intake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elevation of ketone bodies in dairy cows frequently occurs in early lactation, usually concomitantly with a lack of energy and glucose. The objective of this study was to induce an elevated plasma β-hydroxybutyrate (BHBA) concentration over 48 h in mid-lactating dairy cows (i.e., during a period of positive energy balance and normal glucose plasma concentrations). Effects of BHBA infusion on feed intake, metabolism, and performance were investigated. Thirteen cows were randomly assigned to 1 of 2 infusion groups, including an intravenous infusion with Na-dl-β-OH-butyrate (1.7 mol/L) to achieve a plasma concentration of 1.5 to 2.0 mmol/L of BHBA (HyperB; n=5), or an infusion of 0.9% saline solution (control; n=8). Blood was sampled before and hourly during the 48 h of infusion. In the liver, mRNA transcripts related to gluconeogenesis (pyruvate carboxylase, glucose 6-phosphatase, mitochondrial phosphoenolpyruvate carboxykinase), phosphofructokinase, pyruvate dehydrogenase complex, and fatty acid synthesis (acetyl-coenzyme A carboxylase, fatty acid synthase) were measured by real-time PCR. Glyceraldehyde-3-phosphate dehydrogenase and ubiquitin were used as housekeeping genes. Changes (difference between before and after 48-h infusion) during the infusion period were evaluated by ANOVA with treatment as fixed effect, and area under the curve of variables was calculated on the second day of experiment. The plasma BHBA concentration in HyperB cows was 1.74 ± 0.02 mmol/L (mean ± SE) compared with 0.59 ± 0.02 mmol/L for control cows. The change in feed intake, milk yield, and energy corrected milk did not differ between the 2 experimental groups. Infusion of BHBA reduced the plasma glucose concentration (3.47 ± 0.11 mmol/L) in HyperB compared with control cows (4.11 ± 0.08 mmol/L). Plasma glucagon concentration in HyperB was lower than the control group. All other variables measured in plasma were not affected by treatment. In the liver, changes in mRNA abundance for the selected genes were similar between 2 groups. Results demonstrate that intravenous infusion of BHBA decreased plasma glucose concentration in dairy cows, but this decrease could not be explained by alterations in insulin concentrations or key enzymes related to gluconeogenesis. Declined glucose concentration is likely functionally related to decreased plasma glucagon concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the transition period, the lipid metabolism of dairy cows is markedly affected by energy status. Fatty liver is one of the main health disorders after parturition. The aim of this study was to evaluate the effects of a negative energy balance (NEB) at 2 stages in lactation [NEB at the onset of lactation postpartum (p.p.) and a deliberately induced NEB by feed restriction near 100 d in milk] on liver triglyceride content and parameters of lipid metabolism in plasma and liver based on mRNA abundance of associated genes. Fifty multiparous dairy cows were studied from wk 3 antepartum to approximately wk 17 p.p. in 2 periods. According to their energy balance in period 1 (parturition to wk 12 p.p.), cows were allocated to a control (CON; n=25) or a restriction group (RES; 70% of energy requirements; n=25) for 3 wk in mid lactation starting at around 100 d in milk (period 2). Liver triglyceride (TG) content, plasma nonesterified fatty acids (NEFA), and β-hydroxybutyrate were highest in wk 1 p.p. and decreased thereafter. During period 2, feed restriction did not affect liver TG and β-hydroxybutyrate concentration, whereas NEFA concentration was increased in RES cows as compared with CON cows. Hepatic mRNA abundances of tumor necrosis factor α, ATP citrate lyase, mitochondrial glycerol-3-phosphate acyltransferase, and glycerol-3-phosphate dehydrogenase 2 were not altered by lactational and energy status during both experimental periods. The expression of fatty acid synthase was higher in period 2 compared with period 1, but did not differ between RES and CON groups. The mRNA abundance of acetyl-coenzyme A-carboxylase showed a tendency toward higher expression during period 2 compared with period 1. The solute carrier family 27 (fatty acid transporter), member 1 (SLC27A1) was upregulated in wk 1 p.p. and also during feed restriction in RES cows. In conclusion, the present study shows that a NEB has different effects on hepatic lipid metabolism and TG concentration in the liver of dairy cows at early and later lactation. Therefore, the homeorhetic adaptations during the periparturient period trigger excessive responses in metabolism, whereas during the homeostatic control of endocrine and metabolic systems after established lactation, as during the period of feed restriction in the present study, organs are well adapted to metabolic and environmental changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Control of metabolic pathways is a major task of the somatotropic axis and its constituents. Insulinlike growth-factor binding proteins (IGFBPs) bind IGF-I and -II and act as carriers and regulators of their activities in blood, body fluids and tissues. Over two periods of physiological adaptation, this study investigated the binding pattern of IGF-I to IGFBPs in the plasma of 50 multiparous Holstein dairy cows and identified relationships with the hepatic mRNA abundance of IGFBPs and plasma IGF-I during the lactational negative energy balance (NEB) and during a deliberately induced NEB by feed restriction. Period 1 lasted from week 3 antepartum (a.p.) to week 12 postpartum (p.p.) and period 2, the period of feed restriction, started at around 100 DIM and lasted for three weeks with a control (C) and a restricted group (R). Blood samples and liver biopsies were collected in week 3 a.p., and in weeks 1 and 4 p.p. of period 1 and in weeks 0 and 3 of period 2. For column chromatography of IGFBPs, plasma samples of all animals were pooled by group and time points of sampling. Plasma IGF-I dropped from week 3 a.p. to week 1 p.p. and thereafter increased until week 0 (period 2) and did not change up to week 3 of period 2. The binding of IGF-I to plasma IGFBP-1 and -2 increased in period 1 from week 3 a.p. to week 4 p.p., while at the same time it decreased for IGFBP-3. During period 2, the binding of IGF-I to plasma IGFBP-1 and -2 decreased for both groups, but less for R cows. In C cows, the IGF-I binding to IGFBP-3 in plasma increased from week 0 to week 3 of period 2, whereas R cows showed a slight decrease. In period 1, hepatic mRNA abundance of IGFBP-3 followed the plasma IGFBP-3 binding in contrast to the mRNA abundances of IGFBP-1 and -2. The latter increased from week 3 a.p. to week 1 p.p. and decreased afterwards whereas IGF-I binding to IGFBP-1 and -2 increased. In week 3 of period 2, the binding of IGF-I to IGFBP-1 and -2 and their hepatic mRNA abundance were higher in R cows compared to C cows. Hepatic mRNA abundance of IGF-I was consistently positively correlated with plasma IGF-I, especially pronounced during the NEBs in week 1 p.p. (period 1) and in week 3 (period 2) in R cows. While no distinct relation between mRNA abundance of IGFBP-1 and plasma IGF-I was evident, the mRNA abundance of IGFBP-2 was inversely related to plasma IGF-I over all experimental time points independent of treatment. The mRNA abundance of IGFBP-3 was particularly correlated with plasma IGF-I during the 2 experimental stages of a NEB. Obviously IGFBP-3, but not IGFBP-1 and -2, binding in plasma closely followed the respective pattern of hepatic mRNA abundance during the entire experimental period. The fact that changes in the different plasma IGFBPs during altering metabolic stages in different stages of lactation do not always strictly follow their mRNA abundance in liver suggests tissues other than the liver flexibly contributing to the IGFBP pool in plasma as well as a partially post-transcriptional regulation of IGFBP synthesis.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present new experimental constraints on the elastic, spin-dependent WIMP-nucleon cross section using recent data from the XENON100 experiment, operated in the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 224.6 live days x 34 kg of exposure acquired during 2011 and 2012 revealed no excess signal due to axial-vector WIMP interactions with Xe-129 and Xe-131 nuclei. This leads to the most stringent upper limits on WIMP-neutron cross sections for WIMP masses above 6 GeV/c(2), with a minimum cross section of 3.5 x 10(-40) cm(2) at a WIMP mass of 45 GeV/c(2), at 90% confidence level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND There is confusion over the definition of the term "viability state(s)" of microorganisms. "Viability staining" or "vital staining techniques" are used to distinguish live from dead bacteria. These stainings, first established on planctonic bacteria, may have serious shortcomings when applied to multispecies biofilms. Results of staining techniques should be compared with appropriate microbiological data. DISCUSSION Many terms describe "vitality states" of microorganisms, however, several of them are misleading. Authors define "viable" as "capable to grow". Accordingly, staining methods are substitutes, since no staining can prove viability.The reliability of a commercial "viability" staining assay (Molecular Probes) is discussed based on the corresponding product information sheet: (I) Staining principle; (II) Concentrations of bacteria; (III) Calculation of live/dead proportions in vitro. Results of the "viability" kit are dependent on the stains' concentration and on their relation to the number of bacteria in the test. Generally this staining system is not suitable for multispecies biofilms, thus incorrect statements have been published by users of this technique.To compare the results of the staining with bacterial parameters appropriate techniques should be selected. The assessment of Colony Forming Units is insufficient, rather the calculation of Plating Efficiency is necessary. Vital fluorescence staining with Fluorescein Diacetate and Ethidium Bromide seems to be the best proven and suitable method in biofilm research.Regarding the mutagenicity of staining components users should be aware that not only Ethidium Bromide might be harmful, but also a variety of other substances of which the toxicity and mutagenicity is not reported. SUMMARY - The nomenclature regarding "viability" and "vitality" should be used carefully.- The manual of the commercial "viability" kit itself points out that the kit is not suitable for natural multispecies biofilm research, as supported by an array of literature.- Results obtained with various stains are influenced by the relationship between bacterial counts and the amount of stain used in the test. Corresponding vitality data are prone to artificial shifting.- As microbiological parameter the Plating Efficiency should be used for comparison.- Ethidium Bromide is mutagenic. Researchers should be aware that alternative staining compounds may also be or even are mutagenic.