931 resultados para liquidity hypothesis
Resumo:
Histoplasma capsulatum (Hc) is a facultative, intracellular parasite of worldwide significance. Infection with Hc produces a broad spectrum of diseases and may progress to a life-threatening systemic disease, particularly in individuals with HIV infection. Resolution of histoplasmosis is associated with the activation of cell-mediated immunity, and leukotriene B(4) plays an important role in this event. Lipid bodies (LBs) are increasingly being recognized as multifunctional organelles with roles in inflammation and infection. In this study, we investigated LB formation in histoplasmosis and its putative function in innate immunity. LB formation in leukocytes harvested from Hc-infected C57BL/6 mice peaks on day 2 postinfection and correlates with enhanced generation of lipid mediators, including leukotriene B(4) and PGE(2). Pretreatment of leukocytes with platelet-activating factor and BLT1 receptor antagonists showed that both lipid mediators are involved in cell signaling for LB formation. Alveolar leukocytes cultured with live or dead Hc also presented an increase in LB numbers. The yeast alkali-insoluble fraction 1, which contains mainly beta-glucan isolated from the Hc cell wall, induced a dose- and time-dependent increase in LB numbers, indicating that beta-glucan plays a signaling role in LB formation. In agreement with this hypothesis, beta-glucan-elicited LB formation was inhibited in leukocytes from 5-LO(-/-), CD18(low) and TLR2(-/-) mice, as well as in leukocytes pretreated with anti-Dectin-1 Ab. Interestingly, human monocytes from HIV-1-infected patients failed to produce LBs after beta-glucan stimulation. These results demonstrate that Hc induces LB formation, an event correlated with eicosanoid production, and suggest a role for these lipid-enriched organelles in host defense during fungal infection. The Journal of Immunology, 2009, 182: 4025-4035.
Resumo:
Linkage studies have identified the human leukocyte antigen (HLA)-DRB1 as a putative rheumatoid arthritis (RA) susceptibility locus (SL). Nevertheless, it was estimated that its contribution was partial, suggesting that other non-HLA genes may play a role in RA susceptibility. To test this hypothesis, we conducted microarray transcription profiling of peripheral blood mononuclear cells in 15 RA patients and analyzed the data, using bioinformatics programs (significance analysis of microarrays method and GeneNetwork), which allowed us to determine the differentially expressed genes and to reconstruct transcriptional networks. The patients were grouped according to disease features or treatment with tumor necrosis factor blocker. Transcriptional networks that were reconstructed allowed us to identify the interactions occurring between RA SL and other genes, for example, HLA-DRB1 interacting with FNDC3A (fibronectin type III domain containing 3A). Given that fibronectin fragments can stimulate mediators of matrix and cartilage destruction in RA, this interaction is of special interest and may contribute to a clearer understanding of the functional role of HLA-DRB1 in RA pathogenesis.
Resumo:
BACKGROUND AND PURPOSE: There are 2 main hypotheses concerning the cause of mirror movements (MM) in Kallmann syndrome (KS): abnormal development of the primary motor system, involving the ipsilateral corticospinal tract, and lack of contralateral motor cortex inhibitory mechanisms, mainly through the corpus callosum. The purpose of our study was to determine white and gray matter volume changes in a KS population by using optimized voxel-based morphometry (VBM) and to investigate the relationship between the abnormalities and the presence of MM, addressing the 2 mentioned hypotheses. MATERIALS AND METHODS: T1-weighted volumetric images from 21 patients with KS and 16 matched control subjects were analyzed with optimized VBM. Images were segmented and spatially normalized, and these deformation parameters were then applied to the original images before the second segmentation. Patients were divided into groups with and without MM, and a t test statistic was then applied on a voxel-by-voxel basis between the groups and controls to evaluate significant differences. RESULTS: When considering our hypothesis a priori, we found that 2 areas of increased gray matter volume, in the left primary motor and sensorimotor cortex, were demonstrated only in patients with MM, when compared with healthy controls. Regarding white matter alterations, no areas of altered volume involving the corpus callosum or the projection of the corticospinal tract were demonstrated. CONCLUSION: The VBM study did not show significant white matter changes in patients with KS but showed gray matter alterations in keeping with a hypertrophic response to a deficient pyramidal decussation in patients with MM. In addition, gray matter alterations were observed in patients without MM, which can represent more complex mechanisms determining the presence or absence of this symptom.
Resumo:
Hantaviruses are rodent-borne Bunyaviruses that infect the Arvicolinae, Murinae, and Sigmodontinae subfamilies of Muridae. The rate of molecular evolution in the hantaviruses has been previously estimated at approximately 10(-7) nucleotide substitutions per site, per year (substitutions/site/year), based on the assumption of codivergence and hence shared divergence times with their rodent hosts. If substantiated, this would make the hantaviruses among the slowest evolving of all RNA viruses. However, as hantaviruses replicate with an RNA-dependent RNA polymerase, with error rates in the region of one mutation per genome replication, this low rate of nucleotide substitution is anomalous. Here, we use a Bayesian coalescent approach to estimate the rate of nucleotide substitution from serially sampled gene sequence data for hantaviruses known to infect each of the 3 rodent subfamilies: Araraquara virus ( Sigmodontinae), Dobrava virus ( Murinae), Puumala virus ( Arvicolinae), and Tula virus ( Arvicolinae). Our results reveal that hantaviruses exhibit shortterm substitution rates of 10(-2) to 10(-4) substitutions/site/year and so are within the range exhibited by other RNA viruses. The disparity between this substitution rate and that estimated assuming rodent-hantavirus codivergence suggests that the codivergence hypothesis may need to be reevaluated.
Resumo:
Taking into account that atherosclerosis is a focal disease and high levels of plasma cholesterol are closely correlated with its pathogenesis, it is a challenge to explain how equal concentrations of cholesterol bathing the endothelium can produce local, rather than global, effects on arteries. The focal distribution of atherosclerotic lesions has been considered to be dependent, at least in part, on hydrodynamic factors. The present study was carried out to further test the hypothesis that these forces are an important localizing factor in rats feeding a hypercholesterolaemic diet and submitted to infra-diaphragmatic aortic constriction. These animals develop a normotensive prestenotic region with laminar blood flow that serves as control for a normotensive poststenotic region with turbulent blood flow. Our findings clearly demonstrated that the combination of turbulent blood flow and low wall shear stress (WSS) in the presence of hypercholesterolaemia and oxidative stress creates conditions to the formation of focally distributed incipient atherosclerotic lesions observed in the poststenotic segment. In contrast, only diffuse fatty streaks could be observed in the normotensive prestenotic segment with laminar blood flow and normal WSS in the presence of hypercholesterolaemia and oxidative stress. Although haemodynamic forces are not by themselves responsible for the pathogenesis of atherosclerosis, they prime the local vascular wall in which the lesion develop. Further studies are required to establish how haemodynamic forces are detected and transduced into chemical signalling by the cells of the artery wall and then converted into pathophysiologically relevant phenotypic changes.
Resumo:
Aripiprazole is a unique antipsychotic that seems to act as a partial agonist at dopamine D2-receptors, contrasting with other drugs in this class, which are silent antagonists. Aripiprazole may also bind to serotonin receptors. Both neurotransmitters may play major roles in aversion-, anxiety-and panic-related behaviours. Thus, the present work tested the hypothesis that this antipsychotic could also have anti-aversive properties. Male Wistar rats received injections of aripiprazole (0.1-10 mg/kg) and were tested in the open field, in the elevated plus and T mazes (EPM and ETM, respectively) and in a contextual fear conditioning paradigm. Aripiprazole (1mg/kg) increased the percentage of entries onto the open arms of the EPM and attenuated escape responses in the ETM. In the latter model, the dose of 0.1 mg/kg also decreased the latency to leave the enclosed arm, suggesting anxiolytic- and panicolytic-like properties. This dose also decreased the time spent in freezing in a contextual fear conditioning. No significant motor effects were observed at these doses. The present data support the hypothesis that aripiprazole could inhibit anxiety-related responses. Acting as a partial agonist at dopamine receptors, this drug could effectively treat schizophrenia and, in contrast with most antipsychotic drugs, alleviate aversive states.
Resumo:
The dorsal premammillary nucleus (PMd) is a hypothalamic structure that plays a pivotal role in the processing of predatory threats. Lesions of this nucleus virtually eliminate the expression of defensive responses to predator exposure. However, little is known about the neurotransmitters responsible for these behavioral responses. Since PMd neurons express ionotropic glutamate receptors and exposure to predators have been shown to activate nitric oxide (NO) producing cells in this region, the aim of this study was to verify the involvement of glutamate and NO-mediated neurotransmission in defensive reactions modulated by the PMd. We tested in male Wistar rats the hypothesis that intra-PMd injection of the NMDA receptor antagonist, AP7, or the NO synthase inhibitor, N-propyl-L-arginine (NP), would attenuate behavioral responses induced by cat exposure. Our results showed that both AP7 and NP significantly attenuated the behavioral responses induced by the live cat. These results suggest that the NMDA/NO pathway plays an important role in the behavioral responses mediated by the PMd. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The endocannabinoid anandamide is a possible agonist at the Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel, in addition to its agonist activity at cannabinoid type 1 (CB1) receptor. In the midbrain dorsolateral periaqueductal gray (dlPAC) our previous data showed that CB1 activation induces anxiolytic-like effects. However, the rote of TRPV1 has remained unclear. Thus, in the present study we tested the hypothesis that this channel would contribute to the modulation of anxiety-like behaviour in the dlPAG. Mate Wistar rats received local injections of the TRPV1 antagonist capsazepine (10-60 nmol) and were submitted to the elevated plus-maze (EPM) and to the Vogel test. In addition, animals received local injections of capsaicin (0.01-1nmol), a TRPV1 agonist, and were tested in the same models. In accordance with our hypothesis, capsazepine produced anxiolytic-like effects both in the EPM and in the Vogel test. Capsaicin mimicked these results, which might be attributed to its ability to quickly desensitize the channel. Altogether, our data suggest that, while CB1 receptors seem to inhibit aversive responses in the dlPAG, TRPV1 could facilitate them. Thus, CB1 and TRPV1 may have opposite functions in modulating anxiety-like behaviour in this region. (C) 2008 Elsevier B.V. and ECNP. All rights reserved.
Resumo:
The aim of this work was to test the hypothesis that the bed nucleus of the stria terminalis (BST) and noradrenergic neurotransmission therein mediate cardiovascular responses to acute restraint stress in rats. Bilateral microinjection of the non-specific synaptic blocker CoCl2 (0.1nmol/100nl) into the BST enhanced the heart rate (HR) increase associated with acute restraint without affecting the blood pressure increase, indicating that synapses within the BST influence restraint-evoked HR changes. BST pretreatment with the selective 1-adrenoceptor antagonist WB4101 (15nmol/100nl) caused similar effects to cobalt, indicating that local noradrenergic neurotransmission mediates the BST inhibitory influence on restraint-related HR responses. BST treatment with equimolar doses of the 2-adrenoceptor antagonist RX821002 or the -adrenoceptor antagonist propranolol did not affect restraint-related cardiovascular responses, reinforcing the inference that 1-adrenoceptors mediate the BST-related inhibitory influence on HR responses. Microinjection of WB4101 into the BST of rats pretreated intravenously with the anticholinergic drug homatropine methyl bromide (0.2mg/kg) did not affect restraint-related cardiovascular responses, indicating that the inhibitory influence of the BST on the restraint-evoked HR increase could be related to an increase in parasympathetic activity. Thus, our results suggest an inhibitory influence of the BST on the HR increase evoked by restraint stress, and that this is mediated by local 1-adrenoceptors. The results also indicate that such an inhibitory influence is a result of parasympathetic activation.
Resumo:
The bed nucleus of stria terminalis (BST) has a tonic modulating role on the baroreflex parasympathetic component. In the present study, we verified that local BST-adrenoceptors modulate baroreflex-evoked bradycardiac responses in unanesthetized rats. Bilateral microinjection of the selective alpha(1)-adrenoceptor antagonist WB4101 (15 nmol/100 nL) into the BST increased the gain of reflex bradycardia in response to mean arterial pressure increases caused by intravenous (i.v.) infusion of phenylephrine, suggesting that BST alpha(1)-adrenoceptors modulate baroreflex bradycardiac response. Bilateral microinjection of either the selective alpha(2)-adrenoceptor antagonist RX821002 (15 nmol/100 nL) or the non-selective beta-adrenoceptor antagonist propranolol (15 nmol/100 nL) into the BST had not affected baroreflex bradycardia. Animals were pretreated intravenously with the cholinergic muscarinic receptor antagonist homatropine methyl bromide (HMB, 1.5 mg/Kg) to test the hypothesis that activation of alpha(1)-adrenoceptors in the BST would modulate the baroreflex parasympathetic component. Baroreflex bradycardiac responses evoked before and after BST treatment with WB4101 were no longer different when rats were pretreated with HMB. These results suggest that parasympathetic activation accounts for the effects saw after BST pharmacological manipulation and ruling out the possibility of a sympathetic withdraw. In conclusion, our data point out that local alpha(1)-adrenoceptors mediate the BST tonic influence on the baroreflex bradycardiac response modulating parasympathetic cardiac activity. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Objective - Synergistic interactions between aldosterone (Aldo) and angiotensin II (Ang II) have been implicated in vascular inflammation, fibrosis, and remodeling. Molecular mechanisms underlying this are unclear. We tested the hypothesis that c-Src activation, through receptor tyrosine kinase transactivation, is critically involved in synergistic interactions between Aldo and Ang II and that it is upstream of promigratory signaling pathways in vascular smooth muscle cells (VSMCs). Methods and Results - VSMCs from WKY rats were studied. At low concentrations (10(-10) mol/L) Aldo and Ang II alone did not influence c-Src activation, whereas in combination they rapidly increased phosphorylation (P<0.01), an effect blocked by eplerenone ( Aldo receptor antagonist) and irbesartan (AT1R blocker). This synergism was attenuated by AG1478 and AG1296 ( inhibitors of EGFR and PDGFR, respectively), but not by AG1024 (IGFR inhibitor). Aldo and Ang II costimulation induced c-Src-dependent activation of NAD(P)H oxidase and c-Src-independent activation of ERK1/2 (P<0.05), without effect on ERK5, p38MAPK, or JNK. Aldo/Ang II synergistically activated RhoA/Rho kinase and VSMC migration, effects blocked by PP2, apocynin, and fasudil, inhibitors of c-Src, NADPH oxidase, and Rho kinase, respectively. Conclusions - Aldo/Ang II synergistically activate c-Src, an immediate signaling response, through EGFR and PDGFR, but not IGFR transactivation. This is associated with activation of redox-regulated RhoA/Rho kinase, which controls VSMC migration. Although Aldo and Ang II interact to stimulate ERK1/2, such effects are c-Src-independent. These findings indicate differential signaling in Aldo-Ang II crosstalk and highlight the importance of c-Src in redox-sensitive RhoA, but not ERK1/2 signaling. Blockade of Aldo/Ang II may be therapeutically useful in vascular remodeling associated with abnormal VSMC migration.
Resumo:
Lack of effects of clomipramine on Fos and NADPH-diaphorase double-staining in the periaqueductal gray after exposure to an innate fear stimulus - nitric oxide (NO) acts as a neurotransmitter in the rat dorsolateral periaqueductal gray (dIPAG), a midbrain structure that modulates fear and defensive behavior. Since defensive reactions can be alleviated by anxiolytic/anti-panic drugs, the present study tested the effect of clomipramine, a serotonin re-uptake inhibitor, on the activation of NO-producing neurons in the dlPAG of rats exposed to a live predator. Double staining was performed using Fos immunohistochemistry and NADPH-diaphorase as techniques to mark neural activation and to detect NO-producing neurons, respectively. Male Wistar rats received acute or chronic (21 days) injections of saline or clomipramine (10 or 20 mg/kg/day) and were exposed to a live cat. The animals exhibited a robust defensive reaction accompanied by an increase in the number of Fos- and doublestained neurons in the dlPAG, suggesting that cat exposure activates NO-producing neurons. Such effects were not significantly attenuated by clomipramine treatments. The intensity of fear reaction correlated with the intensity of neural staining in the dlPAG, regardless the drug treatment. Thus, the present results reinforce the hypothesis that NO may coordinate defensive responses in the dIPAG and indicate that this mechanism may not be modulated by a serotonin re-uptake inhibitor. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Introduction. Erectile dysfunction (ED) in diabetes is associated with autonomic neuropathy and endothelial dysfunction. Whereas the nonadrenergic-noncholinergic (NANC)/neurogenic nitric oxide pathway has received great attention in diabetes-associated ED, few studies have addressed sympathetic overactivity. Aim. To test the hypothesis that adenosine-induced inhibition of adrenergic-mediated contractile responses in mouse corpus cavernosum is impaired in the presence of diabetes. Methods. The db/db (obesity and type II diabetes caused by a leptin receptor mutation) mouse strain was used as a model of obesity and type II diabetes, and standard procedures were performed to evaluate functional cavernosal responses. Main Outcome Measures. Increased cavernosal responses to sympathetic stimulation in db/db mice are not associated with impaired prejunctional actions of adenosine. Results. Electrical field stimulation (EFS)-, but not phenylephrine (PE)-, induced contractions are enhanced in cavernosal strips from db/db mice in comparison with those from lean littermates. Direct effects of adenosine, 2-chloro-adenosine, A(1) receptor agonist C-8031 (N6 cyclopentyladenosine), and sodium nitroprusside are similar between the strips from lean and db/db mice, whereas relaxant responses to acetylcholine and NANC stimulation are significantly impaired in the cavernosal strips from db/db mice. 5`-Iodotubercidin (adenosine kinase inhibitor) and dipyridamole (inhibitor of adenosine transport), as well as the A(1) agonist C-8031, significantly and similarly inhibit contractions induced by stimulation of adrenergic nerves in the cavernosal strips from lean and db/db mice. Conclusions. Results from this study suggest that corpora cavernosa from obese and diabetic db/db mice display altered neural-mediated responses that would favor penile detumescence, i.e., increased contractile response to adrenergic nerve stimulation and decreased relaxant responses upon activation of NANC nerves. However, increased cavernosal responses to adrenergic nerve stimulation are not due to impaired negative modulation of sympathetic neurotransmission by adenosine in this diabetic model.
Resumo:
Aripiprazole is an atypical antipsychotic that acts as a partial agonist at the dopamine D-2 receptor. It has been mainly investigated in dopamine-based models of schizophrenia, while its effects on glutamate-based paradigms have remained to be further characterized. Due to its unique mechanism of action, aripiprazole has also been considered as a replacement medication for psychostimulant abuse. Thus, in the present study we tested the hypothesis that aripiprazole would prevent the motor hyperactivity induced by psychostimulant and psychotomimetic drugs that act either by dopaminergic or glutamatergic mechanisms. Male Swiss mice received injections of aripiprazole (0.1-1 mg/kg) followed by drugs that enhance the dopamine-mediated neurotransmission, amphetamine (3 mg/kg) or cocaine (5 mg/kg), or by glutamate NMDA-receptor antagonists, ketamine (60 mg/kg) or MK-801 (0.4 mg/kg). Independent groups also received aripiprazole (0.1-1 mg/kg) or haloperidol (0.5 mg/kg) and were tested for catalepsy. All doses of aripiprazole were effective in preventing the motor stimulant effects of amphetamine and cocaine. Moreover, the higher dose also prevented the effects of ketamine and MK-801. The present study reports the effects of aripiprazole in dopaminergic and glutamatergic models predictive of antipsychotic activity, suggesting that both may be useful for screening novel partial agonists with antipsychotic activity. It also shows that aripiprazole may prevent the acute effects of psychostimulant drugs without significant motor impairment. C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Activation of 5-HT1A receptors in the dorsal periaqueductal gray (dPAG) impairs escape behavior, suggesting a panicolytic-like effect. Cannabidiol (CBD), a major non-psychotomimetic compound present in Cannabis sativa, causes anxiolytic-like effects after intra-dPAG microinjections by activating 5-HT1A receptors. In the present work we tested the hypothesis that CBD could also impair escape responses evoked by two proposed animal models of panic: the elevated T-maze (ETM) and electric stimulation of dPAG. In experiment 1 male Wistar rats with a single cannula implanted in the dPAG received a microinjection of CBD or vehicle and, 10 min later, were submitted to the ETM and open field tests. In experiment 2 escape electrical threshold was measured in rats with chemitrodes implanted in the dPAG before and 10 min after CBD microinjection. In experiment 3 similar to experiment 2 except that the animals received a previous intra-dPAG administration of WAY-100635, a 5-HT1A receptor antagonist, before CBD treatment. In the ETM microinjection of CBD into the dPAG impaired inhibitory avoidance acquisition, an anxiolytic-like effect, and inhibited escape response, a panicolytic-like effect. The drug also increased escape electrical threshold, an effect that was prevented by WAY-100635. Together, the results suggest that CBD causes panicolytic effects in the dPAG by activating 5-HT1A receptors. (C) 2010 Elsevier B.V. All rights reserved.