943 resultados para lingual nerve
Resumo:
Evidence suggests that in some species (cats, rabbits, and possibly humans) alpha-adrenoceptors in the iris dilator muscle are "atypical" in that they cannot be readily classified by conventional criteria. This study was undertaken in an attempt to characterize the alpha-adrenoceptor subtype(s) mediating sympathetically elicited mydriasis in rats. Frequency-response pupillary dilator curves were generated by stimulation of the preganglionic cervical sympathetic nerve (1-32 Hz) in pentobarbital-anesthetized rats. Evoked responses were inhibited by systemic administration of nonselective alpha-adrenergic antagonists, phentolamine (0.3-10 mg/kg) and phenoxybenzamine (0.03-1 mg/kg). The selective alpha(1)-adrenergic antagonist, prazosin (0.01-1 mg/kg), also was effective, although alpha(2)-adrenergic antagonism with rauwolscine (0.1-1 mg/kg) was not. alpha(1A)-Adrenoceptor-selective antagonists, 2-([2,6-dimethoxyphenoxyethyl]aminomethyl)-1,4-benzodioxane (WB-4101; 0.1-1 mg/kg) and 5-methylurapidil (0.1-1 mg/kg), as well as the alpha(1D)-adrenoceptor-selective antagonist 8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4.5]decane-7,9-dione (BMY-7378; 1-3 mg/kg), were used to determine the subtype(s) involved. Evoked mydriasis was significantly antagonized by both WB-4101 and 5-methylurapidil but not by BMY-7378. These results suggest that, unlike some other species, adrenoceptors in the rat iris dilator mediating neurogenic mydriasis are "typical" and, in addition, can be characterized as being primarily of the alpha(1A)-adrenoceptor subtype.
Resumo:
This study was designed to determine if the histamine H3 receptor agonist R-alpha-methylhistamine would play a role in modulation of sympathetically evoked mydriasis in anesthetized rats, and if so, to ascertain the specific receptor subtype(s) involved. Reproducible frequency-response curves of pupillary dilation were generated by stimulation of the cervical preganglionic sympathetic nerve (1-32 Hz). Systemic administration of R-alpha-methylhistamine (0.3-3.0 mg kg(-1)) produced a dose-related inhibition of the evoked mydriasis. The greatest inhibition was seen at lower frequency levels, with about 43% depression observed at 2 Hz. The specific histamine H3 receptor antagonist, clobenpropit (3.0 mg kg(-1), i.v.), blocked the inhibitory effect of R-alpha-methylhistamine, whereas neither the histamine H2 receptor antagonist, cimetidine (5.0 mg kg(-1), i.v.), nor the histamine H1 receptor antagonist, chlorpheniramine (0.5 mg kg(-1), i.v.), was effective. The histamine H2 receptor agonist, dimaprit (10 mg kg(-1), i.v.), was also without effect on the evoked mydriasis. R-alpha-methylhistamine (3.0 mg kg(-1)) did not inhibit phenylephrine-induced mydriasis. These results support the conclusion that R-alpha-methylhistamine produces inhibition of sympathetically evoked mydriasis via histamine H3 receptor stimulation, presumably by an action on presynaptic histamine H3 receptors.
Resumo:
Experiments were undertaken to determine if nitric oxide (NO) plays a role in regulation of basal blood flow in the oral cavity of pentobarbital anesthetized cats and, if so, to quantify this effect using dose-response relationships. Blood flow was continuously measured from the surface of the tongue and mandibular gingiva (laser-Doppler flowmetry) and from the lingual artery (ultrasonic flowmetry). Cardiovascular parameters also were recorded. Administration of the nonselective inhibitor of nitric oxide synthase (NOS), L-NAME (0.08-20 mg/kg i.v.), produced a dose-related increase of blood pressure associated with decreases of blood flow at all three measurement sites. Maximal blood flow depression of 50-60% was seen 30-60 min after administration of 1.25 mg/kg of L-NAME. D-NAME (1.25 mg/kg i.v.) was inactive at all sites. Subsequent administration of L-arginine partially reversed effects of L-NAME in the lingual artery and tongue, but not in the gingival circulation. The neuronally selective NOS inhibitor, 7-nitroindazole (7-NI, 30 mg/kg i.p.), was devoid of effect on any of the measured parameters. These results suggest that endothelial (but not neuronally derived) NO plays an important role in control of basal blood flow in oral tissues of the cat.
Resumo:
It has been suggested on the basis of neuropathological and epidemiological evidence that schizophrenia is, at least in part, a neurodevelopmental illness. Some patients show abnormalities in cell position in the medial temporal lobes of their brains. Neurotrophin-3 is one of many proteins essential for the proper growth and development of the nervous system. Therefore the finding of a polymorphism near the promoter region of the gene, alleles of which were associated with the disease, prompted us to attempt replication. In a linkage and association analysis of the same polymorphism using familial schizophrenics and population controls we found no evidence to support the finding. We conclude that mutations or polymorphisms at this gene are unlikely to be involved in the genetic aetiology of schizophrenia.
Resumo:
Schizophrenia is clinically heterogeneous and multidimensional, but it is not known whether this is due to etiological heterogeneity. Previous studies have not consistently reported association between any specific polymorphisms and clinical features of schizophrenia, and have primarily used case-control designs. We tested for the presence of association between clinical features and polymorphisms in the genes for the serotonin 2A receptor (HT2A), dopamine receptor types 2 and 4, dopamine transporter (SLC6A3), and brain-derived neurotrophic factor (BDNF). Two hundred seventy pedigrees were ascertained on the basis of having two or more members with schizophrenia or poor outcome schizoaffective disorder. Diagnoses were made using a structured interview based on the SCID. All patients were rated on the major symptoms of schizophrenia scale (MSSS), integrating clinical and course features throughout the course of illness. Factor analysis revealed positive, negative, and affective symptom factors. The program QTDT was used to implement a family-based test of association for quantitative traits, controlling for age and sex. We found suggestive evidence of association between the His452Tyr polymorphism in HT2A and affective symptoms (P = 0.02), the 172-bp allele of BDNF and negative symptoms (P = 0.04), and the 480-bp allele in SLC6A3 (= DAT1) and negative symptoms (P = 0.04). As total of 19 alleles were tested, we cannot rule out false positives. However, given prior evidence of involvement of the proteins encoded by these genes in psychopathology, our results suggest that more attention should be focused on the impact of these alleles on clinical features of schizophrenia.
Resumo:
The neuregulin-1 gene (NRG1) at chromosome 8p21-22 has been implicated as a schizophrenia susceptibility gene in Icelandic, Scottish, Irish and mixed UK populations. The shared ancestry between these populations led us to investigate the NRG1 polymorphisms and appropriate marker haplotypes for linkage and/or association to schizophrenia in the Irish study of high-density schizophrenia families (ISHDSF). Neither single-point nor multi-point linkage analysis of NRG1 markers gave evidence for linkage independent of our pre-existing findings telomeric on 8p. Analysis of linkage disequilibrium (LD) across the 252 kb interval encompassing the 7 marker core Icelandic/Scottish NRG1 haplotype revealed two separate regions of modest LD, comprising markers SNP8NRG255133, SNP8NRG249130 and SNP8NRG243177 (telomeric) and microsatellites 478B14-428, 420M9-1395, D8S1810 and 420M9-116I12 (centromeric). From single marker analysis by TRANSMIT and FBAT we found no evidence for association with schizophrenia for any marker. Haplotype analysis for the three SNPs in LD region 1 and, separately, the four microsatellites in LD region 2 (analyzed in overlapping 2-marker windows), showed no evidence for overtransmission of specific haplotypes to affected individuals. We therefore conclude that if NRG1 does contain susceptibility alleles for schizophrenia, they impact quite weakly on risk in the ISHDSF.
Resumo:
Multiple lines of evidence suggest that schizophrenia results from aberrant neurodevelopment. The neurogenin1 gene (neurog1) consists of a single 1,666 bp exon that encodes a basic helix-loop-helix (bHLH) transcription factor that causes neuronal differentiation and induces cortical and glutamatergic differentiation programs. Because of its function and its location in 5q31.1, which has been linked to schizophrenia in multiple samples, we tested it for association with the disorder. We sequenced neurog1 in 25 affected subjects from the Irish Study of High-Density Schizophrenia Families. We observed a 5'-UTR SNP at position -60, already present in databases as rs8192558, and tested it along with rs2344485, rs8192559, and rs2344484. Narrow, intermediate, and broad diagnostic definitions were used. The major alleles of rs8192558 and rs2344484 were over-transmitted to affected subjects using both Pedigree Disequilibrium Test (PDT) (0.01 <or = P <or = 0.06) and FBAT (0.02 <or = P <or = 0.07). A haplotype consisting of the major alleles of all four SNPs was significantly over-transmitted in FBAT to the broad definition (P = 0.049), with trend significance to the narrow and intermediate definitions, and with trend significance in PDT. In confirmatory tests using 657 cases and 411 controls, this haplotype was slightly but not significantly over-represented in cases (81% vs. 77%, P = 0.21). These results, along with a priori evidence for the involvement of neurog1 in neurodevelopment, suggest that variants in neurog1 might have a small effect on susceptibility to schizophrenia. This gene should be tested in additional and larger samples.
Resumo:
Glaucoma is a leading cause of blindness. It is a multifactorial condition, the risk factors for which are increasingly well defined from large-scale epidemiological studies. One risk factor that remains controversial is the presence of diabetes. It has been proposed that diabetic eyes are at greater risk of injury from external stressors, such as elevated intraocular pressure. Alternatively, diabetes may cause ganglion cell loss, which becomes additive to a glaucomatous ganglion cell injury. Several clinical trials have considered whether a link exists between diabetes and glaucoma. In this review, we outline these studies and consider the causes for their lack of concordant findings. We also review the biochemical and cellular similarities between the two conditions. Moreover, we review the available literature that attempts to answer the question of whether the presence of diabetes increases the risk of developing glaucoma. At present, laboratory studies provide robust evidence for an association between diabetes and glaucoma.
Resumo:
‘Temporally urgent’ reactions are extremely rapid, spatially precise movements that are evoked following discrete stimuli. The involvement of primary motor cortex (M1) and its relationship to stimulus intensity in such reactions is not well understood. Continuous theta burst stimulation (cTBS) suppresses focal regions of the cortex and can assess the involvement of motor cortex in speed of processing. The primary objective of this study was to explore the involvement of M1 in speed of processing with respect to stimulus intensity. Thirteen healthy young adults participated in this experiment. Behavioral testing consisted of a simple button press using the index finger following median nerve stimulation of the opposite limb, at either high or low stimulus intensity. Reaction time was measured by the onset of electromyographic activity from the first dorsal interosseous (FDI) muscle of each limb. Participants completed a 30 min bout of behavioral testing prior to, and 15 min following, the delivery of cTBS to the motor cortical representation of the right FDI. The effect of cTBS on motor cortex was measured by recording the average of 30 motor evoked potentials (MEPs) just prior to, and 5 min following, cTBS. Paired t-tests revealed that, of thirteen participants, five demonstrated a significant attenuation, three demonstrated a significant facilitation and five demonstrated no significant change in MEP amplitude following cTBS. Of the group that demonstrated attenuated MEPs, there was a biologically significant interaction between stimulus intensity and effect of cTBS on reaction time and amplitude of muscle activation. This study demonstrates the variability of potential outcomes associated with the use of cTBS and further study on the mechanisms that underscore the methodology is required. Importantly, changes in motor cortical excitability may be an important determinant of speed of processing following high intensity stimulation.
Resumo:
Will Kymlicka's liberal culturalism presents a tension between the idea that linguistic diversity in multilingual polities should be protected and the claim that democratic debate across linguistic boundaries is unfeasible. In this article, I resolve that tension by arguing that trans-lingual democratic deliberation in multilingual polities is necessary to legitimise those measures aimed at the protection of linguistic diversity. I conclude that my account provides a coherent normative response to the challenges faced by the European Union (EU) in the field of language policy and that an EU-wide deliberative forum is not as unfeasible as Kymlicka suggests.
Resumo:
The bladder mucosa consists of the urothelium, basement membrane, and lamina propria (LP). Although the urothelium has been given much attention, it may be regarded as one part of a signaling system involving another equally important component of the bladder mucosa, namely, the LP. The LP lies between the basement membrane of the mucosa and the detrusor muscle and is composed of an extracellular matrix containing several types of cells, including fibroblasts, adipocytes, interstitial cells, and afferent and efferent nerve endings. In addition, the LP contains a rich vascular network, lymphatic vessels, elastic fibers, and smooth muscle fascicles (muscularis mucosae). The roles of the LP and its components in bladder function have not been definitively established, though it has been suggested to be the capacitance layer of the bladder, determining bladder compliance and enabling adaptive changes to increasing volumes. However, the bladder LP may also serve as a communication center, with an important integrative role in signal transduction to the central nervous system (nociception, mechanosensation). The LP may also, by means of its different components, make it possible for the urothelium to transmit information to other components of the bladder wall, contributing to activation of the detrusor muscle. In addition, the LP may serve as a source for production of factors influencing the growth of both the overlying urothelium and the underlying detrusor muscle.
Resumo:
Tetrodotoxin (tetrodotoxin) is a potent neurotoxin, which shuts down electrical signaling in nerves by blocking the voltage-gated sodium channel proteins in nerve cell membranes. It was originally discovered in puffer fish but is found in a range of animal species and thought to be produced by bacteria. The toxin can be lethal to humans being 10 000 times more potent than cyanide. Human fatalities have been attributed to the ingestion of this toxin through consumption of puffer fish, a delicacy in Japan and other regions, and other marine species. The effects of tetrodotoxin poisoning onset quickly and include shortness of breath, numbness, tingling, light-headedness, paralysis, and irregular heartbeat. Treatment usually consists of respiratory assistance as no antidote has been developed. The accepted method of analysis for tetrodotoxin is the mouse bioassay, although recently more ethical assays have been developed including high performance liquid chromatography, biosensor and enzyme-linked immunosorbant assay.
Resumo:
In this paper we propose a novel automated glaucoma detection framework for mass-screening that operates on inexpensive retinal cameras. The proposed methodology is based on the assumption that discriminative features for glaucoma diagnosis can be extracted from the optical nerve head structures,
such as the cup-to-disc ratio or the neuro-retinal rim variation. After automatically segmenting the cup and optical disc, these features are feed into a machine learning classifier. Experiments were performed using two different datasets and from the obtained results the proposed technique provides
better performance than approaches based on appearance. A main advantage of our approach is that it only requires a few training samples to provide high accuracy over several different glaucoma stages.
Resumo:
Bronchopulmonary C-fibers and a subset of mechanically sensitive, acid-sensitive myelinated sensory nerves play essential roles in regulating cough. These vagal sensory nerves terminate primarily in the larynx, trachea, carina and large intrapulmonary bronchi. Other bronchopulmonary sensory nerves, sensory nerves innervating other viscera as well as somatosensory nerves innervating the chest wall, diaphragm and abdominal musculature regulate cough patterning and cough sensitivity. The responsiveness and morphology of the airway vagal sensory nerve subtypes and the extrapulmonary sensory nerves that regulate coughing are described. The brainstem and higher brain control systems that process this sensory information are complex, but our current understanding of them is considerable and increasing. The relevance of these neural systems to clinical phenomena, such as urge to cough and psychological methods for treatment of dystussia, is high and modern imaging methods have revealed potential neural substrates for some features of cough in the human.
Resumo:
The measurement and representation of the electrical activity of muscles [electromyography (EMG)] have a long history from the Victorian Era until today. Currently, EMG has uses both as a research tool, in noninvasively recording muscle activation, and clinically in the diagnosis and assessment of nerve and muscle disease and injury as well as in assessing the recovery of neuromuscular function after nerve damage. In the present report, we describe the use of a basic EMG setup in our teaching laboratories to demonstrate some of these current applications. Our practical also illustrates some fundamental physiological and structural properties of nerves and muscles. Learning activities include 1) displaying the recruitment of muscle fibers with increasing force development; 2) the measurement of conduction velocity of motor nerves; 3) the assessment of reflex delay and demonstration of Jendrassik's maneuver; and 4) a Hoffman reflex experiment that illustrates the composition of mixed nerves and the differential excitability thresholds of fibers within the same nerve, thus aiding an understanding of the reflex nature of muscle control. We can set up the classes at various levels of inquiry depending on the needs/professional requirements of the class. The results can then provide an ideal platform for a discovery learning session/tutorial on how the central nervous system controls muscles, giving insights on how supraspinal control interacts with reflexes to give smooth, precise muscular activation.