979 resultados para light water reactor
Resumo:
During a polymorphism screening of hydroxybenzophenone derivatives, a monohydrate pseudopolymorph of (3,4-dihydroxyphenyl)(phenyl)methanone, C(13)H(10)O(3)center dot H(2)O, (I), was obtained. Structural relationships and the role of water in crystal assembly were established on the basis of the known anhydrous form [Cox, Kechagias & Kelly (2008). Acta Cryst. B64, 206-216]. The crystal packing of (I) is stabilized by classical intermolecular O-H...O hydrogen bonds, generating a three-dimensional network.
Resumo:
In Bohmian mechanics, a version of quantum mechanics that ascribes world lines to electrons, we can meaningfully ask about an electron's instantaneous speed relative to a given inertial frame. Interestingly, according to the relativistic version of Bohmian mechanics using the Dirac equation, a massive particle's speed is less than or equal to the speed of light, but not necessarily less. That is, there are situations in which the particle actually reaches the speed of light-a very nonclassical behavior. That leads us to the question of whether such situations can be arranged experimentally. We prove a theorem, Theorem 5, implying that for generic initial wave functions the probability that the particle ever reaches the speed of light, even if at only one point in time, is zero. We conclude that the answer to the question is no. Since a trajectory reaches the speed of light whenever the quantum probability current (psi) over bar gamma(mu)psi is a lightlike 4-vector, our analysis concerns the current vector field of a generic wave function and may thus be of interest also independently of Bohmian mechanics. The fact that the current is never spacelike has been used to argue against the possibility of faster-than-light tunneling through a barrier, a somewhat similar question. Theorem 5, as well as a more general version provided by Theorem 6, are also interesting in their own right. They concern a certain property of a function psi : R(4) -> C(4) that is crucial to the question of reaching the speed of light, namely being transverse to a certain submanifold of C(4) along a given compact subset of space-time. While it follows from the known transversality theorem of differential topology that this property is generic among smooth functions psi : R(4) -> C(4), Theorem 5 asserts that it is also generic among smooth solutions of the Dirac equation. (C) 2010 American Institute of Physics. [doi:10.1063/1.3520529]
Resumo:
Objective: This article describes two inexpensive photodynamic antimicrobial chemotherapy (PACT) protocols to provide intensive local care on ulcerated feet of diabetic patients with osteomyelitis. Background Data: Patients with this condition generally have poor quality of life. The usual treatment consists of the administration of a cocktail of drugs including anti-inflammatories, promoters of blood circulation, and systemic antibiotics. However, depending on the conditions of the tissues, amputation may be required. Consequently, it is important to develop PACT protocols that can help avoid amputation. Materials and Methods: Two PACT protocols were applied to two diabetic patients with osteomyelitis. These protocols were based on several PACT sessions that consisted of: (1) local injection of mixtures of phenothiazines (2% in water) and Hypericum perforatum extract (10% in propylene glycol), and (2) illumination, lasting 10 min, applied to the lesion's interior and exterior using, respectively, an optical fiber and a non-coherent light source. The frequency of PACT was daily or every other day in the beginning, and weekly after tissue recovery begun. The patients were followed clinically and by radiographic testing. Results: Both PACT protocols helped cure these patients who were about to have amputation of their feet. Radiograms showed that bone had healed and that the bone's texture had improved. Conclusion: Here we have described efficient and affordable PACT protocols to treat osteomyelitis in the feet of diabetic patients. This treatment modality should be considered by vascular surgeons and by orthopedists to treat osteomyelitis that is resistant to conventional treatments.
Resumo:
In order for solar energy to serve as a primary energy source, it must be paired with energy storage on a massive scale. At this scale, solar fuels and energy storage in chemical bonds is the only practical approach. Solar fuels are produced in massive amounts by photosynthesis with the reduction of CO(2) by water to give carbohydrates but efficiencies are low. In photosystem II (PSII), the oxygen-producing site for photosynthesis, light absorption and sensitization trigger a cascade of coupled electron-proton transfer events with time scales ranging from picoseconds to microseconds. Oxidative equivalents are built up at the oxygen evolving complex (OEC) for water oxidation by the Kok cycle. A systematic approach to artificial photo synthesis is available based on a ""modular approach"" in which the separate functions of a final device are studied separately, maximized for rates and stability, and used as modules in constructing integrated devices based on molecular assemblies, nanoscale arrays, self-assembled monolayers, etc. Considerable simplification is available by adopting a ""dyesensitized photoelectrosynthesis cell"" (DSPEC) approach inspired by dye-sensitized solar cells (DSSCs). Water oxidation catalysis is a key feature, and significant progress has been made in developing a single-site solution and surface catalysts based on polypyridyl complexes of Ru. In this series, ligand variations can be used to tune redox potentials and reactivity over a wide range. Water oxidation electrocatalysis has been extended to chromophore-catalyst assemblies for both water oxidation and DSPEC applications.
Resumo:
The thermo-solvatochromism of 2,6-dibromo-4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl] phenolate, MePMBr(2), has been studied in mixtures of water, W, with ionic liquids, ILs, in the temperature range of 10 to 60 degrees C, where feasible. The objectives of the study were to test the applicability of a recently introduced solvation model, and to assess the relative importance of solute-solvent solvophobic interactions. The ILs were 1-allyl-3-alkylimidazolium chlorides, where the alkyl groups are methyl, 1-butyl, and 1-hexyl, respectively. The equilibrium constants for the interaction of W and the ILs were calculated from density data; they were found to be linearly dependent on N(C), the number of carbon atoms of the alkyl group; van't Hoff equation (log K versus 1/T) applied satisfactorily. Plots of the empirical solvent polarities, E(T) (MePMBr(2)) in kcal mol(-1), versus the mole fraction of water in the binary mixture, chi(w), showed non-linear, i.e., non-ideal behavior. The dependence of E(T) (MePMBr(2)) on chi(w), has been conveniently quantified in terms of solvation by W, IL, and the ""complex"" solvent IL-W. The non-ideal behavior is due to preferential solvation by the IL and, more efficiently, by IL-W. The deviation from linearity increases as a function of increasing N(C) of the IL, and is stronger than that observed for solvation of MePMBr(2) by aqueous 1-propanol, a solvent whose lipophilicity is 12.8 to 52.1 times larger than those of the ILs investigated. The dependence on N(C) is attributed to solute-solvent solvophobic interactions, whose relative contribution to solvation are presumably greater than that in mixtures of water and 1-propanol.
Resumo:
The effects of solvents on different chemical phenomena, including reactivity, spectroscopic data, and swelling of biopolymers can be rationalized by use of solvatochromic probes, substances whose UV-vis spectra, absorption, or emission are sensitive to the properties of the medium. Thermo-solvatochromism refers to the effect of temperature on solvatochromism. The study of both phenomena sheds light on the relative importance of the factors that contribute to solvation, namely, properties of the probe, those of the solvent (acidity, basicity, dipolarity/polarizability, and lipophilicity), and the temperature. Solvation in binary solvent mixtures is complex because of ""preferential solvation"" of the probe by some component of the mixture. A recently introduced solvent exchange model is based on the presence in the binary solvent mixture of the organic component (molecular solvent or ionic liquid), S, water, W, and a 1:1 hydrogen-bonded species (S-W). Solvation by the latter is more efficient than by its precursor solvents, due to probe-solvent hydrogen-bonding and hydrophobic interactions; dimethyl sulfoxide (DMSO)-W is an exception. Solvatochromic data are employed in order to explain apparently disconnected phenomena, namely, medium effect on the pH-independent hydrolysis of esters, (1)H NMR data of water-ionic liquid (IL) mixtures, and the swelling of cellulose.
Resumo:
An acetylcholinesterase (AchE) based amperometric biosensor was developed by immobilisation of the enzyme onto a self assembled modified gold electrode. Cyclic voltammetric experiments performed with the SAM-AchE biosensor in phosphate buffer solutions ( pH = 7.2) containing acetylthiocholine confirmed the formation of thiocholine and its electrochemical oxidation at E-p = 0.28 V vs Ag/AgCl. An indirect methodology involving the inhibition effect of parathion and carbaryl on the enzymatic reaction was developed and employed to measure both pesticides in spiked natural water and food samples without pre-treatment or pre-concentration steps. Values higher than 91-98.0% in recovery experiments indicated the feasibility of the proposed electroanalytical methodology to quantify both pesticides in water or food samples. HPLC measurements were also performed for comparison and confirmed the values measured amperometrically.
Resumo:
Organosolv lignins can replace petroleum chemicals such as phenol either partially or totally in various applications. Eight lignins, seven of which corresponded to the ethanol-water fractionation of bagasse and the other to a reference lignin (Alcell (R)) were analyzed with the aim to evaluate their chemical and physicochemical characteristics. The purity of the lignin fractions was determined by high pressure liquid chromatography (HPLC) and by ash content. Fourier Transform-Infrared Spectroscopy (FTIR) techniques and differential UV spectroscopy were applied to identify the chemical groups in the lignin samples. The molecular weight distribution was determined by size exclusion chromatography (HPSEC). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques were used to determine the mass loss due to the high temperature treatment. The lignins studied showed the presence of p-hydroxyphenyl (H unit) and a greater proportion of guaiacyl (G unit) moieties, lower purity, similar or greater amount of phenolic hydroxyl groups, and higher degradation temperatures, than the Alcell (R) lignin.
Resumo:
The extracellular hemoglobin of Glossoscolex paulistus (HbGp) is constituted of subunits containing heme groups, monomers and trimers, and nonheme structures, called linkers, and the whole protein has a minimum molecular mass near 3.1 x 10(6) Da. This and other proteins of the same family are useful model systems for developing blood substitutes due to their extracellular nature, large size, and resistance to oxidation. HbGp samples were studied by dynamic light scattering (DLS). In the pH range 6.0-8.0, HbGp is stable and has a monodisperse size distribution with a z-average hydrodynamic diameter (D-h) of 27 +/- 1 nm. A more alkaline pH induced an irreversible dissociation process, resulting in a smaller D-h of 10 +/- 1 nm. The decrease in D-h suggests a complete hemoglobin dissociation. Gel filtration chromatography was used to show unequivocally the oligomeric dissociation observed at alkaline pH. At pH 9.0, the dissociation kinetics is slow, taking a minimum of 24 h to be completed. Dissociation rate constants progressively increase at higher pH, becoming, at pH 10.5, not detectable by DILS. Protein temperature stability was also pH-dependent. Melting curves for HbGp showed oligomeric dissociation and protein denaturation as a function of pH. Dissociation temperatures were lower at higher pH. Kinetic studies were also performed using ultraviolet-visible absorption at the Soret band. Optical absorption monitors the hemoglobin autoxidation while DLS gives information regarding particle size changes in the process of protein dissociation. Absorption was analyzed at different pH values in the range 9.0-9.8 and at two temperatures, 25 degrees C and 38 degrees C. At 25 degrees C, for pH 9.0 and 9.3, the kinetics monitored by ultraviolet-visible absorption presents a monoexponential behavior, whereas for pH 9.6 and 9.8, a biexponential behavior was observed, consistent with heme heterogeneity at more alkaline pH. The kinetics at 38 degrees C is faster than that at 25 degrees C and is biexponential in the whole pH range. DLS dissociation rates are faster than the autoxidation dissociation rates at 25 degrees C. Autoxiclation and dissociation processes are intimately related, so that oligomeric protein dissociation promotes the increase of autoxidation rate and vice versa. The effect of dissociation is to change the kinetic character of the autoxidation of hemes from monoexponential to biexponential, whereas the reverse change is not as effective. This work shows that DLS can be used to follow, quantitatively and in real time, the kinetics of changes in the oligomerization of biologic complex supramolecular systems. Such information is relevant for the development of mimetic systems to be used as blood substitutes.
Resumo:
This paper describes four new species of the bryozoan genus Beania from the Brazilian coast. Two of them have been previously recorded in the western Atlantic as Beania hirtissima (Heller, 1867) and Beania mirabilis Johnston, 1840, respectively; they are redescribed here as Beania americana n. sp. and Beania mirabilissima n. sp. Two reticulate species, Beania correiae n. sp. and Beania metrii n. sp., are newly described. Descriptions of four other species of Beania from the region are also included: Beania australis Busk, 1852, Beania cupulariensis Osburn, 1914, Beania klugei Cook, 1968 and Beania maxilladentata Ramalho, Muricy & Taylor, 2010.
Resumo:
The aim of this Study was to compare the learning process of a highly complex ballet skill following demonstrations of point light and video models 16 participants divided into point light and video groups (ns = 8) performed 160 trials of a pirouette equally distributed in blocks of 20 trials alternating periods of demonstration and practice with a retention test a day later Measures of head and trunk oscillation coordination d1 parity from the model and movement time difference showed similarities between video and point light groups ballet experts evaluations indicated superiority of performance in the video over the point light group Results are discussed in terms of the task requirements of dissociation between head and trunk rotations focusing on the hypothesis of sufficiency and higher relevance of information contained in biological motion models applied to learning of complex motor skills
Resumo:
Biogeochemistry is hosting this special thematic issue devoted to studies of land-water interactions, as part of the Large-scale Biosphere-Atmosphere Experiment in Amaznia (LBA). This compilation of papers covers a broad range of topics with a common theme of coupling land and water processes, across pristine and impacted systems. Findings highlighted that hydrologic flowpaths are clearly important across basin size and structure in determining how water and solutes reach streams. Land-use changes have pronounced impacts on flowpaths, and subsequently, on stream chemistry, from small streams to large rivers. Carbon is produced and transformed across a broad array of fluvial environments and wetlands. Surface waters are not only driven by, but provide feedback to, the atmosphere.
Resumo:
Concentrations of cations (Na(+), Ca(2+), Mg(2+), K(+), NH(4) (+)), anions (HCO(3) (-), Cl(-), NO(3) (-), SO(4) (2-), PO(4) (3-)) and suspended sediments in the Madeira River water were determined near the city of Porto Velho (RO), in order to assess variation in water chemistry from 2004 to 2007. Calcium and bicarbonate were the dominant cation and anion, respectively. Significant seasonal differences were found, with highest concentrations occurring during the dry season, as expected from the drainage of Andean carbonate-rich substratum. Interannual variations were also observed, but became significant only when annual average discharge was 25% less than normal. Under this atypical discharge condition, bicarbonate was replaced by sulfate, and higher suspended sediment concentrations and loads were also observed. Compared to previously published studies, it appears that no significant changes in water chemistry have occurred during the last 20-30 years, although differences in approaches and sampling designs among this and previous studies may not allow detection of modest changes. The calculated suspended sediment load reported here is close to the values presented elsewhere, reinforcing the relative importance of this river as a sediment supplier for the Amazon Basin. Seasonality has a significant control on the chemistry of Madeira River waters, and severe decrease in discharge due to anthropogenic changes, such as construction of reservoirs or the occurrence of drier years-a plausible consequence of global climate change-may lead to modification in the chemical composition as well in the sediment deliver to the Amazon River.
Resumo:
A cyanobacterial mat colonizing the leaves of Eucalyptus grandis was determined to be responsible for serious damage affecting the growth and development of whole plants under the clonal hybrid nursery conditions. The dominant cyanobacterial species was isolated in BG-11 medium lacking a source of combined nitrogen and identified by cell morphology characters and molecular phylogenetic analysis (16S rRNA gene and cpcBA-IGS sequences). The isolated strain represents a novel species of the genus Brasilonema and is designated Brasilonema octagenarum strain UFV-E1. Thin sections of E. grandis leaves analyzed by light and electron microscopy showed that the B. octagenarum UFV-E1 filaments penetrate into the leaf mesophyll. The depth of infection and the mechanism by which the cyanobacterium invades leaf tissue were not determined. A major consequence of colonization by this cyanobacterium is a reduction in photosynthesis in the host since the cyanobacterial mats decrease the amount of light incident on leaf surfaces. Moreover, the cyanobacteria also interfere with stomatal gas exchange, decreasing CO2 assimilation. To our knowledge, this is the first report of an epiphytic cyanobacterial species causing damage to E. grandis leaves.
Resumo:
A procedure for simultaneous separation/preconcentration of copper. zinc, cadmium, and nickel in water samples, based on cloud point extraction (CPE) as a prior step to their determination by inductively coupled plasma optic emission spectrometry (ICP-OES), has been developed. The analytes reacted with 4-(2-pyridylazo)-resorcinol (PAR) at pH 5 to form hydrophobic chelates, which were separated and preconcentrated in a surfactant-rich phase of octylphenoxypolyethoxyethanol (Triton X-I 14). The parameters affecting the extraction efficiency of the proposed method, such as sample pH, complexing agent concentration, buffer amount, surfactant concentration, temperature, kinetics of complexation reaction, and incubation time were optimized and their respective values were 5, 0.6 mmol L(-1). 0.3 mL, 0.15% (w/v), 50 degrees C, 40 min, and 10 min for 15 mL of preconcentrated solution. The method presented precision (R.S.D.) between 1.3% and 2.6% (n = 9). The concentration factors with and without dilution of the surfactant-rich phase for the analytes ranged from 9.4 to 10.1 and from 94.0 to 100.1, respectively. The limits of detection (L.O.D.) obtained for copper, zinc, cadmium, and nickel were 1.2, 1.1, 1.0. and 6.3 mu g L(-1), respectively. The accuracy of the procedure was evaluated through recovery experiments on aqueous samples. (C) 2009 Published by Elsevier B.V.