948 resultados para library (computing)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the transition to multicore processors almost complete, the parallel processing community is seeking efficient ways to port legacy message passing applications on shared memory and multicore processors. MPJ Express is our reference implementation of Message Passing Interface (MPI)-like bindings for the Java language. Starting with the current release, the MPJ Express software can be configured in two modes: the multicore and the cluster mode. In the multicore mode, parallel Java applications execute on shared memory or multicore processors. In the cluster mode, Java applications parallelized using MPJ Express can be executed on distributed memory platforms like compute clusters and clouds. The multicore device has been implemented using Java threads in order to satisfy two main design goals of portability and performance. We also discuss the challenges of integrating the multicore device in the MPJ Express software. This turned out to be a challenging task because the parallel application executes in a single JVM in the multicore mode. On the contrary in the cluster mode, the parallel user application executes in multiple JVMs. Due to these inherent architectural differences between the two modes, the MPJ Express runtime is modified to ensure correct semantics of the parallel program. Towards the end, we compare performance of MPJ Express (multicore mode) with other C and Java message passing libraries---including mpiJava, MPJ/Ibis, MPICH2, MPJ Express (cluster mode)---on shared memory and multicore processors. We found out that MPJ Express performs signicantly better in the multicore mode than in the cluster mode. Not only this but the MPJ Express software also performs better in comparison to other Java messaging libraries including mpiJava and MPJ/Ibis when used in the multicore mode on shared memory or multicore processors. We also demonstrate effectiveness of the MPJ Express multicore device in Gadget-2, which is a massively parallel astrophysics N-body siimulation code.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How can a bridge be built between autonomic computing approaches and parallel computing systems? The work reported in this paper is motivated towards bridging this gap by proposing a swarm-array computing approach based on ‘Intelligent Agents’ to achieve autonomy for distributed parallel computing systems. In the proposed approach, a task to be executed on parallel computing cores is carried onto a computing core by carrier agents that can seamlessly transfer between processing cores in the event of a predicted failure. The cognitive capabilities of the carrier agents on a parallel processing core serves in achieving the self-ware objectives of autonomic computing, hence applying autonomic computing concepts for the benefit of parallel computing systems. The feasibility of the proposed approach is validated by simulation studies using a multi-agent simulator on an FPGA (Field-Programmable Gate Array) and experimental studies using MPI (Message Passing Interface) on a computer cluster. Preliminary results confirm that applying autonomic computing principles to parallel computing systems is beneficial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent research in multi-agent systems incorporate fault tolerance concepts. However, the research does not explore the extension and implementation of such ideas for large scale parallel computing systems. The work reported in this paper investigates a swarm array computing approach, namely ‘Intelligent Agents’. In the approach considered a task to be executed on a parallel computing system is decomposed to sub-tasks and mapped onto agents that traverse an abstracted hardware layer. The agents intercommunicate across processors to share information during the event of a predicted core/processor failure and for successfully completing the task. The agents hence contribute towards fault tolerance and towards building reliable systems. The feasibility of the approach is validated by simulations on an FPGA using a multi-agent simulator and implementation of a parallel reduction algorithm on a computer cluster using the Message Passing Interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clusters of computers can be used together to provide a powerful computing resource. Large Monte Carlo simulations, such as those used to model particle growth, are computationally intensive and take considerable time to execute on conventional workstations. By spreading the work of the simulation across a cluster of computers, the elapsed execution time can be greatly reduced. Thus a user has apparently the performance of a supercomputer by using the spare cycles on other workstations.

Relevância:

20.00% 20.00%

Publicador: