953 resultados para kinetic parameters
Resumo:
FePS3 is a layered antiferromagnet (T N=123 K) with a marked Ising anisotropy in magnetic properties. The anisotropy arises from the combined effect of the trigonal distortion from octahedral symmetry and spin-orbit coupling on the orbitally degenerate5 T 2g ground state of the Fe2+ ion. The anisotropic paramagnetic susceptibilities are interpreted in terms of the zero field Hamiltonian, ?=?i [?(L iz 2 ?2)+|?|L i .S i ]?? ij J ij S i .S j . The crystal field trigonal distortion parameter ?, the spin-orbit coupling ? and the isotropic Heisenberg exchange,J ij, were evaluated from an analysis of the high temperature paramagnetic susceptibility data using the Correlated Effective Field (CEF) theory for many-body magnetism developed by Lines. Good agreement with experiment were obtained for ?/k=215.5 K; ?/k=166.5 K;J nn k=27.7 K; andJ nnn k=?2.3 K. Using these values of the crystal field and exchange parameters the CEF predicts aT N=122 K for FePS3, which is remarkably close to the observed value of theT N. The accuracy of the CEF approximation was also ascertained by comparing the calculated susceptibilities in the CEF with the experimental susceptibility for the isotropic Heisenberg layered antiferromagnet MnPS3, for which the high temperature series expansion susceptibility is available.
Resumo:
We have developed an alternate description of dynamics of nucleation in terms of an extended set of order parameters. The order parameters consist of an ordered set of kth largest clusters, ordered such that k = 1 is the largest cluster in the system, k = 2 is the second largest cluster, and so on. We have derived an analytic expression for the free energy for the kth largest cluster, which is in excellent agreement with the simulated results. At large supersaturation, the free energy barrier for the growth of the kth largest cluster disappears and the nucleation becomes barrierless. The major success of this extended theoretical formalism is that it can clearly explain the observed change in mechanism at large metastability P. Bhimalapuram et al., Phys. Rev. Lett. 98, 206104 (2007)] and the associated dynamical crossover. The classical nucleation theory cannot explain this crossover. The crossover from activated to barrierless nucleation is found to occur at a supersaturation where multiple clusters cross the critical size. We attribute the crossover as the onset of the kinetic spinodal. We have derived an expression for the rate of nucleation in the barrierless regime by modeling growth as diffusion on the free energy surface of the largest cluster. The model reproduces the slower increase in the rate of growth as a function of supersaturation, as observed in experiments.
Resumo:
A successful protein-protein docking study culminates in identification of decoys at top ranks with near-native quaternary structures. However, this task remains enigmatic because no generalized scoring functions exist that effectively infer decoys according to the similarity to near-native quaternary structures. Difficulties arise because of the highly irregular nature of the protein surface and the significant variation of the nonbonding and solvation energies based on the chemical composition of the protein-protein interface. In this work, we describe a novel method combining an interface-size filter, a regression model for geometric compatibility (based on two correlated surface and packing parameters), and normalized interaction energy (calculated from correlated nonbonded and solvation energies), to effectively rank decoys from a set of 10,000 decoys. Tests on 30 unbound binary protein-protein complexes show that in 16 cases we can identify at least one decoy in top three ranks having <= 10 angstrom backbone root mean square deviation from true binding geometry. Comparisons with other state-of-art methods confirm the improved ranking power of our method without the use of any experiment-guided restraints, evolutionary information, statistical propensities, or modified interaction energy equations. Tests on 118 less-difficult bound binary protein-protein complexes with <= 35% sequence redundancy at the interface showed that in 77% cases, at least 1 in 10,000 decoys were identified with <= 5 angstrom backbone root mean square deviation from true geometry at first rank. The work will promote the use of new concepts where correlations among parameters provide more robust scoring models. It will facilitate studies involving molecular interactions, including modeling of large macromolecular assemblies and protein structure prediction. (C) 2010 Wiley Periodicals, Inc. J Comput Chem 32: 787-796, 2011.
Resumo:
Silver nanoparticles are being extensively studied due to their widespread applications and unique properties. In the present study, the growth kinetics of silver nanoparticles as synthesized on reduction of silver nitrate solution by aqueous extract of Azadirachta indica leaves was investigated. The formation of silver nanoparticles was preliminarily monitored by measuring the absorption maxima at different time intervals after adding the reducing agent to the silver salt solution (0.5, 1, 1.5, 2, 2.5, 3, 3.5 and 4 h). At different time points characterization studies were conducted using X-ray diffraction studies, FT-IR techniques, zeta potential studies and transmission electron microscopy. The total available silver in the reaction medium was determined at different durations using ICP-OES. The changes in reduction potential in the medium were also monitored using potentiometric analysis. The results confirm a definite change in the medium pertaining to formation of the stable nanoparticles after 2 h, and a significant increase in the agglomeration tendency after 4 h of interaction. The growth kinetic data of the nanoparticles till 3.5 h was found to fit the LSW model confirming diffusion limited growth. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The partial thermodynamic functions of the solvent component of a ternary system have been deduced in terms of the interaction parameters by integration of several series which emerge from the Maclaurin infinite series based on the integral property of the system and subjected to appropriate boundary conditions. The series integration shows that the resulting partial functions are suitable for interpreting the thermodynamic properties of the system and are independent of compositional paths. In the present analysis, the higher order terms of these series are found to make insignificant contributions.
Resumo:
Nucleation at large metastability is still largely an unsolved problem, even though it is a problem of tremendous current interest, with wide-ranging practical value, from atmospheric research to materials science. It is now well accepted that the classical nucleation theory (CNT) fails to provide a qualitative picture and gives incorrect quantitative values for such quantities as activation-free energy barrier and supersaturation dependence of nucleation rate, especially at large metastability. In this paper, we present an alternative formalism to treat nucleation at large supersaturation by introducing an extended set of order parameters in terms of the kth largest liquid-like clusters, where k = 1 is the largest cluster in the system, k = 2 is the second largest cluster and so on. At low supersaturation, the size of the largest liquid-like cluster acts as a suitable order parameter. At large supersaturation, the free energy barrier for the largest liquid-like cluster disappears. We identify this supersaturation as the one at the onset of kinetic spinodal. The kinetic spinodal is system-size-dependent. Beyond kinetic spinodal many clusters grow simultaneously and competitively and hence the nucleation and growth become collective. In order to describe collective growth, we need to consider the full set of order parameters. We derive an analytic expression for the free energy of formation of the kth largest cluster. The expression predicts that, at large metastability (beyond kinetic spinodal), the barrier of growth for several largest liquid-like clusters disappears, and all these clusters grow simultaneously. The approach to the critical size occurs by barrierless diffusion in the cluster size space. The expression for the rate of barrier crossing predicts weaker supersaturation dependence than what is predicted by CNT at large metastability. Such a crossover behavior has indeed been observed in recent experiments (but eluded an explanation till now). In order to understand the large numerical discrepancy between simulation predictions and experimental results, we carried out a study of the dependence on the range of intermolecular interactions of both the surface tension of an equilibrium planar gas-liquid interface and the free energy barrier of nucleation. Both are found to depend significantly on the range of interaction for the Lennard-Jones potential, both in two and three dimensions. The value of surface tension and also the free energy difference between the gas and the liquid phase increase significantly and converge only when the range of interaction is extended beyond 6-7 molecular diameters. We find, with the full range of interaction potential, that the surface tension shows only a weak dependence on supersaturation, so the reason for the breakdown of CNT (with simulated values of surface tension and free energy gap) cannot be attributed to the supersaturation dependence of surface tension. This remains an unsettled issue at present because of the use of the value of surface tension obtained at coexistence.
Resumo:
Sheep liver serine hydroxymethyltransferase (EC 2.1.2.1) is a homotetramer of M(r) 213,000 requiring pyridoxal-5'-phosphate (PLP) as cofactor, Removal of PLP from the holoenzyme converted the enzyme to the apo form which, in addition to being inactive, was devoid of the characteristic absorption spectrum. Upon the addition of PLP to the apoenzyme, complete activity was restored and the visible absorption spectrum with a maximum at 425 nm was regained. The interaction of PLP with the apoenzyme revealed two phases of reaction with pseudo-first-order rate constants of 20 +/- 5 s(-1) and 12.2 +/- 2.0 x 10(-3) s(-1), respectively. However, addition of PLP to the apoenzyme did not cause gross conformational changes as evidenced by circular dichroic and fluorescence spectroscopy. Although conformationally apoenzyme and holoenzyme were indistinguishable, they had distinct apparent melting temperatures of 51 +/- 2 and 58 +/- 2 degrees C, respectively, and the reconstituted holoenzyme was thermally as stable as the native holoenzyme. These results suggested that there was no apparent difference in the secondary structure of holoenzyme, apoenzyme, and reconstituted holoenzyme, However, sedimentation analysis of the apoenzyme revealed the presence of two peaks of S-20,S-w values of 8.7 +/- 0.5 and 5.7 +/- 0.3 S, respectively. A similar pattern was observed when the apoenzyme was chromatographed on a calibrated Sephadex G-150 column. The first peak corresponded to the tetrameric form (M(r) 200,000 +/- 15,000) while the second peak had a M(r) of 130,000 +/- 10,000. Reconstitution experiments revealed that only the tetrameric form of the apoenzyme could be converted into an active holoenzyme while the dimeric form could not be reconstituted into an active enzyme. These results demonstrate that PLP plays an important role in maintaining the structural integrity of the enzyme by preventing the dissociation of the enzyme into subunits, in addition to its function in catalysis. (C) 1996 Academic Press, Inc.
Resumo:
Accurate numerical solutions to the problems in fluid-structure (aeroelasticity) interaction are becoming increasingly important in recent years. The methods based on FCD (Fixed Computational Domain) and ALE (Alternate Lagrangian Eulerian) to solve such problems suffer from numerical instability and loss of accuracy. They are not general and can not be extended to the flowsolvers on unstructured meshes. Also, global upwind schemes can not be used in ALE formulation thus leads to the development of flow solvers on moving grids. The KFVS method has been shown to be easily amenable on moving grids required in unsteady aerodynamics. The ability of KFMG (Kinetic Flux vector splitting on Moving Grid) Euler solver in capturing shocks, expansion waves with small and very large pressure ratios and contact discontinuities has been demonstrated.
Resumo:
The unfolding of the chicken egg white riboflavin carrier protein by disulfide reduction with dithiothreitol led to aggregation with concomitant loss of ligand binding characteristics and the capacity to interact with six monoclonal antibodies directed against surface-exposed discontinuous epitopes. The reduced protein could, however, bind to a monoclonal antibody recognizing sequential epitope. Under optimal conditions of protein refolding, the vitamin carrier protein regained its folded structure with high efficiency with simultaneous complete restoration of hydrophobic flavin binding site as well as the epitopic conformations exposed at the surface in a manner comparable to its native form.
Resumo:
Laser processing of structure sensitive hypereutectic ductile iron, a cast alloy employed for dynamically loaded automative components, was experimentally investigated over a wide range of process parameters: from power (0.5-2.5 kW) and scan rate (7.5-25 mm s(-1)) leading to solid state transformation, all the way through to melting followed by rapid quenching. Superfine dendritic (at 10(5) degrees C s(-1)) or feathery (at 10(4) degrees C s(-1)) ledeburite of 0.2-0.25 mu m lamellar space, gamma-austenite and carbide in the laser melted and martensite in the transformed zone or heat-affected zone were observed, depending on the process parameters. Depth of geometric profiles of laser transformed or melt zone structures, parameters such as dendrile arm spacing, volume fraction of carbide and surface hardness bear a direct relationship with the energy intensity P/UDb2, (10-100 J mm(-3)). There is a minimum energy intensity threshold for solid state transformation hardening (0.2 J mm(-3)) and similarly for the initiation of superficial melting (9 J mm(-3)) and full melting (15 J mm(-3)) in the case of ductile iron. Simulation, modeling and thermal analysis of laser processing as a three-dimensional quasi-steady moving heat source problem by a finite difference method, considering temperature dependent energy absorptivity of the material to laser radiation, thermal and physical properties (kappa, rho, c(p)) and freezing under non-equilibrium conditions employing Scheil's equation to compute the proportion of the solid enabled determination of the thermal history of the laser treated zone. This includes assessment of the peak temperature attained at the surface, temperature gradients, the freezing time and rates as well as the geometric profile of the melted, transformed or heat-affected zone. Computed geometric profiles or depth are in close agreement with the experimental data, validating the numerical scheme.
Resumo:
To evaluate the parameters in the two-parameter fracture model, i.e. the critical stress intensity factor and critical crack tip opening displacement for the fracture of plain concrete in Mode 1 for the given test configuration and geometry, considerable computational effort is necessary. A simple graphical method has been proposed using normalized fracture parameters for the three-point bend (3PB) notched specimen and the double-edged notched (DEN) specimen. A similar graphical method is proposed to compute the maximum load carrying capacity of a specimen, using the critical fracture parameters both for 3PB and DEN configurations.
Resumo:
Flexible cantilever pipes conveying fluids with high velocity are analysed for their dynamic response and stability behaviour. The Young's modulus and mass per unit length of the pipe material have a stochastic distribution. The stochastic fields, that model the fluctuations of Young's modulus and mass density are characterized through their respective means, variances and autocorrelation functions or their equivalent power spectral density functions. The stochastic non self-adjoint partial differential equation is solved for the moments of characteristic values, by treating the point fluctuations to be stochastic perturbations. The second-order statistics of vibration frequencies and mode shapes are obtained. The critical flow velocity is-first evaluated using the averaged eigenvalue equation. Through the eigenvalue equation, the statistics of vibration frequencies are transformed to yield critical flow velocity statistics. Expressions for the bounds of eigenvalues are obtained, which in turn yield the corresponding bounds for critical flow velocities.
Resumo:
The nonequilibrium-phase transition has been studied by Monte Carlo simulation in a ferromagnetically interacting (nearest-neighbour) kinetic Ising model in presence of a sinusoidally oscillating magnetic field. The ('specific-heat') temperature derivative of energies (averaged over a full cycle of the oscillating field) diverge near the dynamic transition point.
Resumo:
The nonequilibrium dynamic phase transition, in the kinetic Ising model in the presence of an oscillating magnetic field has been studied both by Monte Carlo simulation and by solving numerically the mean-field dynamic equation of motion for the average magnetization. In both cases, the Debye ''relaxation'' behavior of the dynamic order parameter has been observed and the ''relaxation time'' is found to diverge near the dynamic transition point. The Debye relaxation of the dynamic order parameter and the power law divergence of the relaxation time have been obtained from a very approximate solution of the mean-field dynamic equation. The temperature variation of appropriately defined ''specific heat'' is studied by the Monte Carlo simulation near the transition point. The specific heat has been observed to diverge near the dynamic transition point.
Resumo:
The nonequilibrium dynamic phase transition in the kinetic Ising model in the presence of an oscillating magnetic field is studied by Monte Carlo simulation. The fluctuation of the dynamic older parameter is studied as a function of temperature near the dynamic transition point. The temperature variation of appropriately defined ''susceptibility'' is also studied near the dynamic transition point. Similarly, the fluctuation of energy and appropriately defined ''specific heat'' is studied as a function of temperature near the dynamic transition point. In both cases, the fluctuations (of dynamic order parameter and energy) and the corresponding responses diverge (in power law fashion) near the dynamic transition point with similar critical behavior (with identical exponent values).