868 resultados para item recommendation
Resumo:
Current interest in measuring quality of life is generating interest in the construction of computerized adaptive tests (CATs) with Likert-type items. Calibration of an item bank for use in CAT requires collecting responses to a large number of candidate items. However, the number is usually too large to administer to each subject in the calibration sample. The concurrent anchor-item design solves this problem by splitting the items into separate subtests, with some common items across subtests; then administering each subtest to a different sample; and finally running estimation algorithms once on the aggregated data array, from which a substantial number of responses are then missing. Although the use of anchor-item designs is widespread, the consequences of several configuration decisions on the accuracy of parameter estimates have never been studied in the polytomous case. The present study addresses this question by simulation, comparing the outcomes of several alternatives on the configuration of the anchor-item design. The factors defining variants of the anchor-item design are (a) subtest size, (b) balance of common and unique items per subtest, (c) characteristics of the common items, and (d) criteria for the distribution of unique items across subtests. The results of this study indicate that maximizing accuracy in item parameter recovery requires subtests of the largest possible number of items and the smallest possible number of common items; the characteristics of the common items and the criterion for distribution of unique items do not affect accuracy.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
The article presents a study of a CEFR B2-level reading subtest that is part of the Slovenian national secondary school leaving examination in English as a foreign language, and compares the test-taker actual performance (objective difficulty) with the test-taker and expert perceptions of item difficulty (subjective difficulty). The study also analyses the test-takers’ comments on item difficulty obtained from a while-reading questionnaire. The results are discussed in the framework of the existing research in the fields of (the assessment of) reading comprehension, and are addressed with regard to their implications for item-writing, FL teaching and curriculum development.
Resumo:
Situation Background Assessment and Recommendation (SBAR): Undergraduate Perspectives C Morgan, L Adams, J Murray, R Dunlop, IK Walsh. Ian K Walsh, Centre for Medical Education, Queen’s University Belfast, Mulhouse Building, Royal Victoria Hospital, Grosvenor Road, Belfast BT12 6DP Background and Purpose: Structured communication tools are used to improve team communication quality.1,2 The Situation Background Assessment and Recommendation (SBAR) tool is widely adopted within patient safety.3 SBAR effectiveness is reportedly equivocal, suggesting use is not sustained beyond initial training.4-6 Understanding perspectives of those using SBAR may further improve clinical communication. We investigated senior medical undergraduate perspectives on SBAR, particularly when communicating with senior colleagues. Methodology: Mixed methods data collection was used. A previously piloted questionnaire with 12 five point Lickert scale questions and 3 open questions was given to all final year medical students. A subgroup also participated in 10 focus groups, deploying strictly structured audio-recorded questions. Selection was by convenience sampling, data gathered by open text questions and comments transcribed verbatim. In-vivo coding (iterative, towards data saturation) preceded thematic analysis. Results: 233 of 255 students (91%) completed the survey. 1. There were clearly contradictory viewpoints on SBAR usage. A recurrent theme was a desire for formal feedback and a relative lack of practice/experience with SBAR. 2. Students reported SBAR as having variable interpretation between individuals; limiting use as a shared mental model. 3. Brief training sessions are insufficient to embed the tool. 4. Most students reported SBAR helping effective communication, especially by providing structure in stressful situations. 5. Only 18.5% of students felt an alternative resource might be needed. Sub analysis of the themes highlighted: A. Lack of clarity regarding what information to include and information placement within the acronym, B. Senior colleague negative response to SBAR C. Lack of conciseness with the tool. Discussion and Conclusions: Despite a wide range of contradictory interpretation of SBAR utility, most students wish to retain the resource. More practice opportunities/feedback may enhance user confidence and understanding. References: (1) Leonard M, Graham S, Bonacum D. The human factor: the critical importance of effective teamwork and communication in providing safe care. Quality & Safety in Health Care 2004 Oct;13(Suppl 1):85-90. (2) d'Agincourt-Canning LG, Kissoon N, Singal M, Pitfield AF. Culture, communication and safety: lessons from the airline industry. Indian J Pediatr 2011 Jun;78(6):703-708. (3) Dunsford J. Structured communication: improving patient safety with SBAR. Nurs Womens Health 2009 Oct;13(5):384-390. (4) Compton J, Copeland K, Flanders S, Cassity C, Spetman M, Xiao Y, et al. Implementing SBAR across a large multihospital health system. Jt Comm J Qual Patient Saf 2012 Jun;38(6):261-268. (5) Ludikhuize J, de Jonge E, Goossens A. Measuring adherence among nurses one year after training in applying the Modified Early Warning Score and Situation-Background-Assessment-Recommendation instruments. Resuscitation 2011 Nov;82(11):1428-1433. (6) Cunningham NJ, Weiland TJ, van Dijk J, Paddle P, Shilkofski N, Cunningham NY. Telephone referrals by junior doctors: a randomised controlled trial assessing the impact of SBAR in a simulated setting. Postgrad Med J 2012 Nov;88(1045):619-626.
Resumo:
Aus einer Original-Handschrift herausgegeben von G. H. M. von Wedell, Magdeburgischem Landrath und Ritter des eisernen Kreuzes
Resumo:
Recommendation systems aim to help users make decisions more efficiently. The most widely used method in recommendation systems is collaborative filtering, of which, a critical step is to analyze a user's preferences and make recommendations of products or services based on similarity analysis with other users' ratings. However, collaborative filtering is less usable for recommendation facing the "cold start" problem, i.e. few comments being given to products or services. To tackle this problem, we propose an improved method that combines collaborative filtering and data classification. We use hotel recommendation data to test the proposed method. The accuracy of the recommendation is determined by the rankings. Evaluations regarding the accuracies of Top-3 and Top-10 recommendation lists using the 10-fold cross-validation method and ROC curves are conducted. The results show that the Top-3 hotel recommendation list proposed by the combined method has the superiority of the recommendation performance than the Top-10 list under the cold start condition in most of the times.
Resumo:
There are hundreds of millions of songs available to the public, necessitating the use of music recommendation systems to discover new music. Currently, such systems account for only the quantitative musical elements of songs, failing to consider aspects of human perception of music and alienating the listener’s individual preferences from recommendations. Our research investigated the relationships between perceptual elements of music, represented by the MUSIC model, with computational musical features generated through The Echo Nest, to determine how a psychological representation of music preference can be incorporated into recommendation systems to embody an individual’s music preferences. Our resultant model facilitates computation of MUSIC factors using The Echo Nest features, and can potentially be integrated into recommendation systems for improved performance.
Resumo:
Abstract-The immune system is a complex biological system with a highly distributed, adaptive and self-organising nature. This paper presents an artificial immune system (AIS) that exploits some of these characteristics and is applied to the task of film recommendation by collaborative filtering (CF). Natural evolution and in particular the immune system have not been designed for classical optimisation. However, for this problem, we are not interested in finding a single optimum. Rather we intend to identify a sub-set of good matches on which recommendations can be based. It is our hypothesis that an AIS built on two central aspects of the biological immune system will be an ideal candidate to achieve this: Antigen - antibody interaction for matching and antibody - antibody interaction for diversity. Computational results are presented in support of this conjecture and compared to those found by other CF techniques.
Resumo:
Artificial Immune Systems have been used successfully to build recommender systems for film databases. In this research, an attempt is made to extend this idea to web site recommendation. A collection of more than 1000 individuals' web profiles (alternatively called preferences / favourites / bookmarks file) will be used. URLs will be classified using the DMOZ (Directory Mozilla) database of the Open Directory Project as our ontology. This will then be used as the data for the Artificial Immune Systems rather than the actual addresses. The first attempt will involve using a simple classification code number coupled with the number of pages within that classification code. However, this implementation does not make use of the hierarchical tree-like structure of DMOZ. Consideration will then be given to the construction of a similarity measure for web profiles that makes use of this hierarchical information to build a better-informed Artificial Immune System.
Resumo:
Abstract. We combine Artificial Immune Systems (AIS) technology with Collaborative Filtering (CF) and use it to build a movie recommendation system. We already know that Artificial Immune Systems work well as movie recommenders from previous work by Cayzer and Aickelin ([3], [4], [5]). Here our aim is to investigate the effect of different affinity measure algorithms for the AIS. Two different affinity measures, Kendall's Tau and Weighted Kappa, are used to calculate the correlation coefficients for the movie recommender. We compare the results with those published previously and show that that Weighted Kappa is more suitable than others for movie problems. We also show that AIS are generally robust movie recommenders and that, as long as a suitable affinity measure is chosen, results are good.
Resumo:
Personal information is increasingly gathered and used for providing services tailored to user preferences, but the datasets used to provide such functionality can represent serious privacy threats if not appropriately protected. Work in privacy-preserving data publishing targeted privacy guarantees that protect against record re-identification, by making records indistinguishable, or sensitive attribute value disclosure, by introducing diversity or noise in the sensitive values. However, most approaches fail in the high-dimensional case, and the ones that don’t introduce a utility cost incompatible with tailored recommendation scenarios. This paper aims at a sensible trade-off between privacy and the benefits of tailored recommendations, in the context of privacy-preserving data publishing. We empirically demonstrate that significant privacy improvements can be achieved at a utility cost compatible with tailored recommendation scenarios, using a simple partition-based sanitization method.
Resumo:
The growing availability and popularity of opinion rich resources on the online web resources, such as review sites and personal blogs, has made it convenient to find out about the opinions and experiences of layman people. But, simultaneously, this huge eruption of data has made it difficult to reach to a conclusion. In this thesis, I develop a novel recommendation system, Recomendr that can help users digest all the reviews about an entity and compare candidate entities based on ad-hoc dimensions specified by keywords. It expects keyword specified ad-hoc dimensions/features as input from the user and based on those features; it compares the selected range of entities using reviews provided on the related User Generated Contents (UGC) e.g. online reviews. It then rates the textual stream of data using a scoring function and returns the decision based on an aggregate opinion to the user. Evaluation of Recomendr using a data set in the laptop domain shows that it can effectively recommend the best laptop as per user-specified dimensions such as price. Recomendr is a general system that can potentially work for any entities on which online reviews or opinionated text is available.
Resumo:
Abstract. We combine Artificial Immune Systems (AIS) technology with Collaborative Filtering (CF) and use it to build a movie recommendation system. We already know that Artificial Immune Systems work well as movie recommenders from previous work by Cayzer and Aickelin ([3], [4], [5]). Here our aim is to investigate the effect of different affinity measure algorithms for the AIS. Two different affinity measures, Kendall's Tau and Weighted Kappa, are used to calculate the correlation coefficients for the movie recommender. We compare the results with those published previously and show that that Weighted Kappa is more suitable than others for movie problems. We also show that AIS are generally robust movie recommenders and that, as long as a suitable affinity measure is chosen, results are good.