972 resultados para inversion ankle sprain


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thick GaN films were grown on sapphire in a home-made vertical HVPE reactor. Effect of nucleation treatments on the properties of GaN films was investigated, including the nitridation of sapphire, low temperature GaN buffer and MOCVD-template. Various material characterization techniques, including AFM, SEM, XRD, CL and PL have been used to assess these GaN epitaxial films. It was found that the surface of sapphire after high temperature nitridation was flat and showed high density nucleation centers. In addition, smooth Ga-polarity surface of epitaxial layer can be obtained on the nitridation sapphire placed in air for several days due to polarity inversion. This may be caused by the atoms re-arrangement because of oxidation. The roughness of N-polarity film was caused by the huge inverted taper domains, which can penetrate up to the surface. The low temperature GaN buffer gown at 650 degrees C is favorable for subsequent epitaxial film, which had narrow FWHM of 307 arcsec. The epitaxial growth on MOCVD-template directly came into quasi-2D growth mode due to enough nucleation centers, and high quality GaN films were acquired with the values of the FWHM of 141 arcsec for (002) reflections. After etching in boiled KOH, that the total etch-pit density was only 5 x 106 cm(-2) illustrated high quality of the thick film on template. The photoluminescence spectrum of GaN film on the MOCVD-template showed the narrowest line-width of the band edge emission in comparison with other two growth modes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The beating patterns in the Shubnikov-de Haas oscillatory magnetoresistance originating from zero-field spin splitting of two-dimensional electron gases (2DEGs) in In0.52Al0.48As/InxGa1-xAs/In0.52Al0.48As quantum wells with silicon delta doped on the upper barrier layer have been investigated by means of magnetotransport measurements before and after illumination. Contrary to the expectation, after each illumination, the beating nodes induced by the zero-field spin-splitting effect shift to lower and lower magnetic field due to the decrease in the zero-field spin-splitting energy of the 2DEGs. The anomalous phenomenon of the shift of the beating nodes and the decrease in spin-orbit coupling constants after illumination cannot be explained by utilizing the previous linear Rashba model. It is suggested that the decrease in the zero-field spin-splitting energy and the spin-orbit coupling constant arise from the nonlinear Rashba spin splitting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In scattering calculations using the T-matrix method, the calculation of the T-matrix involves multiplication and inversion of matrices. These two types of matrix operations are time-consuming, especially for the matrices with large size. Petrov et al. [D. Petrov, Y. Shkuratov, G. Videen, Opt. Lett. 32 (2007) 1168] proposed an optimized matrix inversion technique, which suggests the inversion of two matrices, each of which contains half the number of rows. This technique reduces time-consumption significantly. On the basis of this approach, we propose another fast calculation technique for scattering in the T-matrix method, which obtains the scattered fields through carrying out only the operations between matrices and the incident field coefficient. Numerical results show that this technique can decrease time-consumption by more than half that of the optimized matrix inversion technique by Petrov et al. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Flying lemurs or Colugos (order Dermoptera) represent an ancient mammalian lineage that contains only two extant species. Although molecular evidence strongly supports that the orders Dermoptera, Scandentia, Lagomorpha, Rodentia and Primates form a superordinal clade called Supraprimates (or Euarchontoglires), the phylogenetic placement of Dermoptera within Supraprimates remains ambiguous. Results: To search for cytogenetic signatures that could help to clarify the evolutionary affinities within this superordinal group, we have established a genome-wide comparative map between human and the Malayan flying lemur (Galeopterus variegatus) by reciprocal chromosome painting using both human and G. variegatus chromosome-specific probes. The 22 human autosomal paints and the X chromosome paint defined 44 homologous segments in the G. variegatus genome. A putative inversion on GVA 11 was revealed by the hybridization patterns of human chromosome probes 16 and 19. Fifteen associations of human chromosome segments (HSA) were detected in the G. variegatus genome: HSA1/3, 1/10, 2/21, 3/ 21, 4/8, 4/18, 7/15, 7/16, 7/19, 10/16, 12/22 (twice), 14/15, 16/19 (twice). Reverse painting of G. variegatus chromosome-specific paints onto human chromosomes confirmed the above results, and defined the origin of the homologous human chromosomal segments in these associations. In total, G. variegatus paints revealed 49 homologous chromosomal segments in the HSA genome. Conclusion: Comparative analysis of our map with published maps from representative species of other placental orders, including Scandentia, Primates, Lagomorpha and Rodentia, suggests a signature rearrangement (HSA2q/21 association) that links Scandentia and Dermoptera to one sister clade. Our results thus provide new evidence for the hypothesis that Scandentia and Dermoptera have a closer phylogenetic relationship to each other than either of them has to Primates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spin splitting of conduction subbands in Al_(0.3)Ga_(0.7)As/GaAs/Al_xGa_(1-x)As/Al_(0.3)Ga_(0.7)As step quantum wells induced by interface and electric field related Rashba effects is investigated theoretically by the method of finite difference. The dependence of the spin splitting on the electric field and the well structure, which is controlled by the well width and the step width, is investigated in detail. Without an external electric field, the spin splitting is induced by an in terface related Rashba term due to the built-in structure inversion asymmetry. Applying the external electric field to the step QW, the Rashba effect can be enhanced or weakened, depending on the well structure as well as the direction and the magnitude of the electric field. The spin splitting is mainly controlled by the interface related Rashba term under a negative and a stronger positive electric field, and the contribution of the electric field related Rashba term dominates in a small range of a weaker positive electric field.A method to determine the interface parameter is proposed.The results show that the step QWs might be used as spin switches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radiation-induced electrical changes in both space charge region (SCR) of Si detectors and bulk material (BM) have been studied for samples of diodes and resistors made on Si materials with different initial resistivities. The space charge sign inversion fluence (Phi(inv)) has been found to increase linearly with the initial doping concentration (the reciprocal of the resistivity), which gives improved radiation hardness to Si detectors fabricated from low resistivity material. The resistivity of the BM, on the other hand, has been observed to increase with the neutron fluence and approach a saturation value in the order of hundreds k Omega cm at high fluences, independent of the initial resistivity and material type. However, the fluence (Phi(s)), at which the resistivity saturation starts, increases with the initial doping concentrations and the value of Phi(s) is in the same order of that of Phi(inv) for all resistivity samples. Improved radiation hardness can also be achieved by the manipulation of the space charge concentration (N-eff) in SCR, by selective filling and/or freezing at cryogenic temperatures the charge state of radiation-induced traps, to values that will give a much smaller full depletion voltage. Models have been proposed to explain the experimental data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intersubband absorption energy shifts in 3-level system stemming from depolarization and excitonlike effects are investigated. Analytically, the expressions we derive present good explanations to the conventional 2-level results and bare potential transition energy results; and numerical results show that they are more exact than the previous studies to describe the 3-level system depolarization and excitonlike shift (DES) character especially for higher carrier density (more than 8 x 10(11) cm(-2)). One interesting detail we find is that the "large blue" DES becomes "slight redshift" in the low doping limit (less than 1.9 x 10(11) cm(-2)), which may be neglected by the previous studies of intersubband transitions. Temperature character of DES in the step well structure is also numerically studied. Finally the above are applied to calculate asymmetric step quantum well structures. The two main functional aspects of terahertz (THz) emitters are discussed and several basic optimizing conditions are considered. By adjusting the well geometry parameters and material composition systematically, some optimized structures which satisfy all of the six conditions are recommended in tables. These optimizations may provide useful references to the design of 3-level-based optically pumping THz emitters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We theoretically study the electronic structure, spin splitting, effective mass, and spin orientation of InAs nanowires with cylindrical symmetry in the presence of an external electric field and uniaxial stress. Using an eight-band k center dot p theoretical model, we deduce a formula for the spin splitting in the system, indicating that the spin splitting under uniaxial stress is a nonlinear function of the momentum and the electric field. The spin splitting can be described by a linear Rashba model when the wavevector and the electric field are sufficiently small. Our numeric results show that the uniaxial stress can modulate the spin splitting. With the increase of wavevector, the uniaxial tensile stress first restrains and then amplifies the spin splitting of the lowest electron state compared to the no strain case. The reverse is true under a compression. Moreover, strong spin splitting can be induced by compression when the top of the valence band is close to the bottom of the conductance band, and the spin orientations of the electron stay almost unchanged before the overlap of the two bands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a shell model which is capable of describing the spectra of upper g(9/2)-shell nuclei close to the N = Z line, we study the structure of two isomeric states 7(+) and 21(+) in the odd-odd N = Z nucleus Ag-94. It is found that both isomeric states exhibit a large collectivity. The 7(+) state is oblately deformed, and is suggested to be a shape isomer in nature. The 21(+) state becomes isomeric because of level inversion of the 19(+) and 21(+) states due to core excitations across the N = Z = 50 shell gap. Calculation of spectroscopic quadrupole moment indicates clearly an enhancement in these states due to the core excitations. However, the present shell model calculation that produces the 19(+)-21(+) level inversion cannot accept the large-deformation picture of Mukha et al.