983 resultados para intracranial pressure
Resumo:
This paper investigates the design of winglet tips for unshrouded high pressure turbine rotors, considering aerodynamic and thermal performance simultaneously. A novel parameterization method has been developed to alter the tip geometry of a rotor blade. A design survey of un-cooled, flat-tipped winglets is performed using RANS calculations for a single rotor at engine representative operating conditions. Compared to a plain tip, large efficiency gains can be realized by employing an overhang around the full perimeter of the blade, but the overall heat load rises significantly. By employing an overhang on only the early suction surface, significant efficiency improvements can be obtained without increasing the overall heat transfer to the blade. The flow physics are explored in detail to explain the results. For a plain tip, the leakage and passage vortices interact to create a three-dimensional impingement onto the blade suction surface, causing high heat transfer. The addition of an overhang on the early suction surface displaces the tip leakage vortex away from the blade, weakening the impingement effect and reducing the heat transfer on the blade. The winglets reduce the aerodynamic losses by unloading the tip section, reducing the leakage flow rate, turning the leakage flow in a more streamwise direction and reducing the interaction between the leakage fluid and endwall flows. Generally these effects are most effective close to the leading edge of the tip, where the leakage flow is subsonic.
Resumo:
To reduce the surgical trauma to the patient, minimally invasive surgery is gaining considerable importance since the eighties. More recently, robot assisted minimally invasive surgery was introduced to enhance the surgeon's performance in these procedures. This resulted in an intensive research on the design, fabrication and control of surgical robots over the last decades. A new development in the field of surgical tool manipulators is presented in this article: a flexible manipulator with distributed degrees of freedom powered by microhydraulic actuators. The tool consists of successive flexible segments, each with two bending degrees of freedom. To actuate these compliant segments, dedicated fluidic actuators are incorporated, together with compact hydraulic valves which control the actuator motion. Especially the development of microvalves for this application was challenging, and are the main focus of this paper. The valves distribute the hydraulic power from one common high pressure supply to a series of artificial muscle actuators. Tests show that the angular stroke of the each segment of this medical instrument is 90°. © 2012 Springer Science+Business Media, LLC.
Resumo:
Direct Numerical Simulations (DNS) of turbulent n-heptane sprays autoigniting at high pressure (P=24bar) and intermediate air temperature (Tair=1000K) have been performed to investigate the physical mechanisms present under conditions where low-temperature chemistry is expected to be important. The initial turbulence in the carrier gas, the global equivalence ratio in the spray region, and the initial droplet size distribution of the spray were varied. Results show that spray ignition exhibits a spotty nature, with several kernels developing independently in those regions where the mixture fraction is close to its most reactive value ξMR (as determined from homogeneous reactor calculations) and the scalar dissipation rate is low. Turbulence reduces the ignition delay time as it promotes mixing between air and the fuel vapor, eventually resulting in lower values of scalar dissipation. High values of the global equivalence ratio are responsible for a larger number of ignition kernels, due to the higher probability of finding regions where ξ=ξMR. Spray polydispersity results in the occurrence of ignition over a wider range of mixture fraction values. This is a consequence of the inhomogeneities in the mixing field that characterize these sprays, where poorly mixed rich spots are seen to alternate with leaner ones which are well-mixed. The DNS simulations presented in this work have also been used to assess the applicability of the Conditional Moment Closure (CMC) method to the simulation of spray combustion. CMC is found to be a valid method for capturing spray autoignition, although care should be taken in the modelling of the unclosed terms appearing in the CMC equations. © 2013 The Combustion Institute.
Resumo:
The information provided by the in-cylinder pressure signal is of great importance for modern engine management systems. The obtained information is implemented to improve the control and diagnostics of the combustion process in order to meet the stringent emission regulations and to improve vehicle reliability and drivability. The work presented in this paper covers the experimental study and proposes a comprehensive and practical solution for the estimation of the in-cylinder pressure from the crankshaft speed fluctuation. Also, the paper emphasizes the feasibility and practicality aspects of the estimation techniques, for the real-time online application. In this study an engine dynamics model based estimation method is proposed. A discrete-time transformed form of a rigid-body crankshaft dynamics model is constructed based on the kinetic energy theorem, as the basis expression for total torque estimation. The major difficulties, including load torque estimation and separation of pressure profile from adjacent-firing cylinders, are addressed in this work and solutions to each problem are given respectively. The experimental results conducted on a multi-cylinder diesel engine have shown that the proposed method successfully estimate a more accurate cylinder pressure over a wider range of crankshaft angles. Copyright © 2012 SAE International.
Resumo:
A novel method of measuring cylinder gas temperature in an internal combustion engine cylinder is introduced. The physical basis for the technique is that the flow rate through an orifice is a function of the temperature of the gas flowing through the orifice. Using a pressure transducer in the cylinder, and another in a chamber connected to the cylinder via an orifice, it is shown how the cylinder temperature can be determined with useful sensitivity. In this paper the governing equations are derived, which show that the heat transfer characteristics of the chamber are critical to the performance of the system, and that isothermal or adiabatic conditions give the optimum performance. For a typical internal combustion engine, it is found that the pre-compression cylinder temperature is related to the chamber pressure late in the compression process with sensitivity of the order of 0.005 bar/K. Copyright © 2010 SAE International.
Resumo:
The measured time-history of the cylinder pressure is the principal diagnostic in the analysis of processes within the combustion chamber. This paper defines, implements and tests a pressure analysis algorithm for a Formula One racing engine in MATLAB1. Evaluation of the software on real data is presented. The sensitivity of the model to the variability of burn parameter estimates is also discussed. Copyright © 1997 Society of Automotive Engineers, Inc.
Resumo:
This paper describes a computational study of lean premixed high pressure methane-air flames, using Computational Fluid Dynamics (CFD) together with a reactor network approach. A detailed chemical reaction mechanism is employed to predict pollutant concentrations, placing emphasis on nitrogen oxide emissions. The reacting flow field is divided into separate zones in which homogeneity of the physical and chemical conditions prevails. The defined zones are interconnected forming an Equivalent Reactor Network (ERN). Three flames are examined for which experimental data is available. Flame A is characterised by an equivalence ratio of 0.43 while Flames B and C are richer with equivalence ratios of 0.5 and 0.56 respectively. Computations are performed for a range of operating conditions, quantifying the effect in the emitted NOx levels. Model predictions are compared against the available experimental data. Sensitivity analysis is performed to investigate the effect of the network size, in order to define the optimum number of reactors for accurate predictions of the species mass fractions. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
The viability of Boundary Layer Ingesting (BLI) engines for future aircraft propulsion is dependent on the ability to design robust, efficient engine fan systems for operation with continuously distorted inlet flow. A key step in this process is to develop an understanding of the specific mechanisms by which an inlet distortion affects the performance of a fan stage. In this paper, detailed full-annulus experimental measurements of the flow field within a low-speed fan stage operating with a continuous 60-degree inlet stagnation pressure distortion are presented. These results are used to describe the three-dimensional fluid mechanics governing the interaction between the fan and the distortion and to make a quantitative assessment of the impact on loss generation within the fan. A 5.3 percentage point reduction in stage total-to-total efficiency is observed as a result of the inlet distortion. The reduction in performance is shown to be dominated by increased loss generation in the rotor due to off-design incidence values at its leading edge, an effect which occurs throughout the annulus despite the localised nature of the inlet distortion. Increased loss generation in the stator row is also observed due to flow separations that are shown to be caused by whirl angle distortion at rotor exit. By addressing these losses, it should be possible to achieve improved efficiency in BLI fan systems. Copyright © 2012 by ASME.
Resumo:
A laboratory-based methodology to launch cylindrical sand slugs at high velocities is developed. The methodology generates well-characterised soil ejecta without the need for detonation of an explosive; this laboratory-based tool thereby allows for the experimental investigation of the soil-structure events. The experimental set-up comprises a launcher with a cylindrical cavity and a piston to push out the sand slug. The apparatus is used to launch both dry and water-saturated sand slugs. High speed photography is used to characterise the evolution of the sand slugs after launch. We find that the diameter of the slugs remains unchanged, and the sand particles possess only an axial component of velocity. However, the sand particles have a uniform spatial gradient of axial velocity and this results in lengthening of the slugs as they travel towards their target. Thus, the density of the sand slugs remains spatially homogenous but decreases with increasing time. The velocity gradient is typically higher in the dry sand slugs than that of the water-saturated slugs. The pressure exerted by the slugs on a rigid-stationary target is measured by impacting the slugs against a direct impact Kolsky bar. After an initial high transient pressure, the pressure reduces to a value of approximately ρv 2 where ρ is the density of the impacting sand slug and v is the particle velocity. This indicates that loading due to the sand is primarily inertial in nature. The momentum transmitted to the Kolsky bar was approximately equal to the incident momentum of the sand slugs, regardless of whether they are dry or water-saturated. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
A novel temperature and pressure sensor based on a single film bulk acoustic resonator (FBAR) is designed. This FBAR support two resonant modes, which response opposite to the change of temperature. By sealed the back cavity of a back-trench membrane type FBAR with silicon wafer, an on-chip single FBAR sensor suitable for measuring temperature and pressure simultaneously is proposed. For unsealed device, the experimental results show that the first resonant mode has a temperature coefficient of frequency (TCF) of 69.5ppm/K, and the TCF of the second mode is -8.1ppm/K. After sealed the back trench, it can be used as a pressure sensor, the pressure coefficient of frequency (PCF) for the two resonant mode is -17.4ppm/kPa and -6.1 ppm/kPa respectively, both of them being more sensitive than other existing pressure sensors. © 2013 Trans Tech Publications Ltd, Switzerland.