848 resultados para intra-team dyads


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ES] El objeto de esta investigación es la obtención de parámetros de fiabilidad a partir de la aplicación de la herramienta validada Team Sport Assessment Procedure (TSAP).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crowding is defined as the negative effect obtained by adding visual distractors around a central target which has to be identified. Some studies have suggested the presence of a marked crowding effect in developmental dyslexia (e.g. Atkinson, 1991; Spinelli et al., 2002). Inspired by Spinelli’s (2002) experimental design, we explored the hypothesis that the crowding effect may affect dyslexics’ response times (RTs) and accuracy in identification tasks dealing with words, pseudowords, illegal non-words and symbolstrings. Moreover, our study aimed to clarify the relationship between the crowding phenomenon and the word-reading process, in an inter-language comparison perspective. For this purpose we studied twenty-two French dyslexics and twenty-two Italian dyslexics (total forty-four dyslexics), compared to forty-four subjects matched for reading level (22 French and 22 Italians) and forty-four chronological age-matched subjects (22 French and 22 Italians). Children were all tested on reading and cognitive abilities. Results showed no differences between French and Italian participants suggesting that performances were homogenous. Dyslexic children were all significantly impaired in words and pseudowords reading compared to their normal reading controls. Regarding the identification task with which we assessed crowding effect, both accuracy and RTs showed a lexicality effect which meant that the recognition of words was more accurate and faster in words than pseudowords, non-words and symbolstrings. Moreover, compared to normal readers, dyslexics’ RTs and accuracy were impaired only for verbal materials but not for non-verbal material; these results are in line with the phonological hypothesis (Griffiths & Snowling, 2002; Snowling, 2000; 2006) . RTs revealed a general crowding effect (RTs in the crowding condition were slower than those recorded in the isolated condition) affecting all the subjects’ performances. This effect, however, emerged to be not specific for dyslexics. Data didn’t reveal a significant effect of language, allowing the generalization of the obtained results. We also analyzed the performance of two subgroups of dyslexics, categorized according to their reading abilities. The two subgroups produced different results regarding the crowding effect and type of material, suggesting that it is meaningful to take into account also the heterogeneity of the dyslexia disorder. Finally, we also analyzed the relationship of the identification task with both reading and cognitive abilities. In conclusion, this study points out the importance of comparing visual tasks performances of dyslexic participants with those of their reading level-matched controls. This approach may improve our comprehension of the potential causal link between crowding and reading (Goswami, 2003).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Eifel volcanism is part of the Central European Volcanic Province (CEVP) and is located in the Rhenish Massif, close to the Rhine and Leine Grabens. The Quaternary Eifel volcanism appears to be related to a mantle plume activity. However, the causes of the Tertiary Hocheifel volcanism remain debated. We present geochronological, geochemical and isotope data to assess the geotectonic settings of the Tertiary Eifel volcanism. Based on 40Ar/39Ar dating, we were able to identify two periods in the Hocheifel activity: from 43.6 to 39.0 Ma and from 37.5 to 35.0 Ma. We also show that the pre-rifting volcanism in the northernmost Upper Rhine Graben (59 to 47 Ma) closely precede the Hocheifel volcanic activity. In addition, the volcanism propagates from south to north within the older phase of the Hocheifel activity. At the time of Hocheifel volcanism, the tectonic activity in the Hocheifel was controlled by stress field conditions identical to those of the Upper Rhine Graben. Therefore, magma generation in the Hocheifel appears to be caused by decompression due to Middle to Late Eocene extension. Our geochemical data indicate that the Hocheifel magmas were produced by partial melting of a garnet peridotite at 75-90 km depth. We also show that crustal contamination is minor although the magmas erupted through a relatively thick continental lithosphere. Sr, Nd and Pb isotopic compositions suggest that the source of the Hocheifel magmas is a mixing between depleted FOZO or HIMU-like material and enriched EM2-like material. The Tertiary Hocheifel and the Quaternary Eifel lavas appear to have a common enriched end-member. However, the other sources are likely to be distinct. In addition, the Hocheifel lavas share a depleted component with the other Tertiary CEVP lavas. Although the Tertiary Hocheifel and the Quaternary Eifel lavas appear to originate from different sources, the potential involvement of a FOZO-like component would indicate the contribution of deep mantle material. Thus, on the basis of the geochemical and isotope data, we cannot rule out the involvement of plume-type material in the Hocheifel magmas. The Ko’olau Scientific Drilling Project (KSDP) has been initiated in order to evaluate the long-term evolution of Ko’olau volcano and obtain information about the Hawaiian mantle plume. High precision Pb triple spike data, as well as Sr and Nd isotope data on KSDP lavas and Honolulu Volcanics (HVS) reveal compositional source variations during Ko’olau growth. Pb isotopic compositions indicate that, at least, three Pb end-members are present in Ko’olau lavas. Changes in the contributions of each component are recorded in the Pb, Sr and Nd isotopes stratigraphy. The radiogenic component is present, at variable proportion, in all three stages of Ko’olau growth. It shows affinities with the least radiogenic “Kea-lo8” lavas present in Mauna Kea. The first unradiogenic component was present in the main-shield stage of Ko’olau growth but its contribution decreased with time. It has EM1 type characteristics and corresponds to the “Ko’olau” component of Hawaiian mantle plume. The second unradiogenic end-member, so far only sampled by Honololu lavas, has isotopic characteristics similar to those of a depleted mantle. However, they are different from those of the recent Pacific lithosphere (EPR MORB) indicating that the HVS are not derived from MORB-related source. We suggest, instead, that the HVS result from melting of a plume material. Thus the evolution of a single Hawaiian volcano records the geochemical and isotopic changes within the Hawaiian plume.