941 resultados para integrin-linked kinase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Platelet endothelial cell adhesion molecule-1 (CD31) is a 130-kDa glycoprotein receptor present on the surface of platelets, neutrophils, monocytes, certain T-lymphocytes, and vascular endothelial cells. CD31 is involved in adhesion and signal transduction and is implicated in the regulation of a number of cellular processes. These include transendothelial migration of leukocytes, integrin regulation, and T-cell function, although its function in platelets remains unclear. In this study, we demonstrate the ability of the platelet agonists collagen, convulxin, and thrombin to induce tyrosine phosphorylation of CD31. Furthermore, we show that this event is independent of platelet aggregation and secretion and is accompanied by an increase in surface expression of CD31. A kinase capable of phosphorylating CD31 was detected in CD31 immunoprecipitates, and its activity was increased following activation of platelets. CD31 tyrosine phosphorylation was reduced or abolished by the Src family kinase inhibitor PP2, suggesting a role for these enzymes. In accordance with this, each of the Src family members expressed in platelets, namely Fyn, Lyn, Src, Yes, and Hck, was shown to co-immunoprecipitate with CD31. The involvement of Src family kinases in this process was confirmed through the study of mouse platelets deficient in Fyn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is extensive evidence to show that phosphatidylinositol 3-kinase plays an important role in signaling by the immune family of receptors, which has recently been extended to include the platelet collagen receptor, glycoprotein VI. In this report we present two potential mechanisms for the regulation of this enzyme on stimulation of platelets by collagen. We show that on stimulation with collagen, the regulatory subunit of phosphatidylinositol 3-kinase associates with the tyrosine-phosphorylated form of the adapter protein linker for activator of T Cells (LAT) and the tyrosine-phosphorylated immunoreceptor tyrosine-based activation motif of the Fc receptor gamma-chain (a component of the collagen receptor complex that includes glycoprotein VI). The associations of the Fc receptor gamma-chain and LAT with p85 are rapid and supported by the Src-homology 2 domains of the regulatory subunit. We did not obtain evidence to support previous observations that the regulatory subunit of phosphatidylinositol 3-kinase is regulated through association with the tyrosine kinase Syk. The present results provide a molecular basis for the regulation of the p85/110 form of phosphatidylinositol 3-kinase by GPVI, the collagen receptor that underlies activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of mouse platelets by collagen is associated with tyrosine phosphorylation of multiple proteins including the Fc receptor gamma-chain, the tyrosine kinase Syk and phospholipase Cgamma2, suggesting that collagen signals in a manner similar to that of immune receptors. This hypothesis has been tested using platelets from mice lacking the Fc receptor gamma-chain or Syk. Tyrosine phosphorylation of Syk and phospholipase Cgamma2 by collagen stimulation is absent in mice lacking the Fc receptor gamma-chain. Tyrosine phosphorylation of phospholipase Cgamma2 by collagen stimulation is also absent in mice platelets which lack Syk, although phosphorylation of the Fc receptor gamma-chain is maintained. In contrast, tyrosine phosphorylation of platelet proteins by the G protein-coupled receptor agonist thrombin is maintained in mouse platelets deficient in Fc receptor gamma-chain or Syk. The absence of Fc receptor gamma-chain or Syk is accompanied by a loss of secretion and aggregation responses in collagen- but not thrombin-stimulated platelets. These observations provide the first direct evidence of an essential role for the immunoreceptor tyrosine-based activation motif (ITAM) in signalling by a non-immune receptor stimulus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stimulation of platelets by the extracellular matrix protein collagen leads to activation of a tyrosine kinase-dependent mechanism resulting in secretion and aggregation. Tyrosine phosphorylation of the tyrosine kinase Syk and phospholipase Cgamma2 are early events in collagen-induced activation. We recently proposed that collagen-signaling in platelets involves a receptor or a receptor-associated protein containing an immunoreceptor tyrosine-based activation motif (ITAM) enabling interaction with Syk. In this report we show that collagen stimulation of platelets causes rapid tyrosine phosphorylation of the ITAM containing Fc receptor gamma-chain and that this is precipitated by the tandem Src homology 2 (SH2) domains of Syk expressed as a fusion protein. In addition we demonstrate an association between the Fc receptor gamma-chain with endogenous Syk in collagen-stimulated platelets. The Fc receptor gamma-chain undergoes tyrosine phosphorylation in platelets stimulated by a collagen-related peptide which does not bind the integrin alpha2beta1 and by the lectin wheat germ agglutinin. In contrast, cross-linking of the platelet low affinity receptor for immune complexes, FcgammaRIIA, or stimulation by thrombin does not induce phosphorylation of the Fc receptor gamma-chain. The present results provide a molecular basis for collagen activation of platelets which is independent of the integrin alpha2beta1 and involves phosphorylation of the Fc receptor gamma-chain, its association with Syk and subsequent phosphorylation of phospholipase Cgamma2. Collagen is the first example of a nonimmune receptor stimulus to signal through a pathway closely related to signaling by immune receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutathione-S-transferase (GST)-Grb2 fusion proteins have been used to identify the potential role of Grb2-binding proteins in platelet activation by the platelet low-affinity IgG receptor, Fc gamma RIIA. Two tyrosine phosphoproteins of 38 and 63 kD bind to the SH2 domain of Grb2 following Fc gamma RIIA stimulation of platelets. Both are located in the particulate fraction following platelet activation and are also able to bind to a GST-construct containing the SH2 and SH3 domains of phospholipase C gamma 1. p38 also forms a complex with the tyrosine kinase csk in stimulated cells and is a substrate for the kinase. The SH3 domains of Grb2 form a stable complex with SOS1 and two proteins of 75 kD and 120 kD, which undergo tyrosine phosphorylation in Fc gamma RIIA stimulated cells. The 75-kD protein is recognized by antibodies to SLP-76, which has recently been isolated from T cells and sequenced. Tyrosine phosphorylation of p38 and p63 is also observed in platelets stimulated by the tyrosine kinase-linked receptor agonist collagen and by the G protein-coupled receptor agonist thrombin, although phosphorylation of SLP-76 is only observed in collagen-stimulated platelets. p38 and p63 may provide a docking site for Grb2, thereby linking Grb2 SH3-binding proteins SOS1, SLP-76, and p120 to downstream signalling events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ROCO proteins are a family of large, multidomain proteins characterised by the presence of a Ras of complex proteins (ROC) domain followed by a COR, or C-terminal of ROC, domain. It has previously been shown that the ROC domain of the human ROCO protein Leucine Rich Repeat Kinase 2 (LRRK2) controls its kinase activity. Here, the ability of the ROC domain of another human ROCO protein, Death Associated Protein Kinase 1 (DAPK1), to bind GTP and control its kinase activity has been evaluated. In contrast to LRRK2, loss of GTP binding by DAPK1 does not result in loss of kinase activity, instead acting to modulate this activity. These data highlight the ROC domain of DAPK1 as a target for modifiers of this proteins function, and casts light on the role of ROC domains as intramolecular regulators in complex proteins with implications for a broad range of human diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of Parkinson's disease (PD). LRRK2 contains a Ras of complex proteins (ROC) domain that may act as a GTPase to regulate its protein kinase activity. The structure of ROC and the mechanism(s) by which it regulates kinase activity are not known. Here, we report the crystal structure of the LRRK2 ROC domain in complex with GDP-Mg2+ at 2.0-Å resolution. The structure displays a dimeric fold generated by extensive domain-swapping, resulting in a pair of active sites constructed with essential functional groups contributed from both monomers. Two PD-associated pathogenic residues, R1441 and I1371, are located at the interface of two monomers and provide exquisite interactions to stabilize the ROC dimer. The structure demonstrates that loss of stabilizing forces in the ROC dimer is likely related to decreased GTPase activity resulting from mutations at these sites. Our data suggest that the ROC domain may regulate LRRK2 kinase activity as a dimer, possibly via the C-terminal of ROC (COR) domain as a molecular hinge. The structure of the LRRK2 ROC domain also represents a signature from a previously undescribed class of GTPases from complex proteins and results may provide a unique molecular target for therapeutics in PD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: In rat middle cerebral and mesenteric arteries the KCa2.3 component of endothelium-dependent hyperpolarization (EDH) is lost following stimulation of thromboxane (TP) receptors, an effect that may contribute to the endothelial dysfunction associated with cardiovascular disease. In cerebral arteries, KCa2.3 loss is associated with NO synthase inhibition, but is restored if TP receptors are blocked. The Rho/Rho kinase pathway is central for TP signalling and statins indirectly inhibit this pathway. The possibility that Rho kinase inhibition and statins sustain KCa2.3 hyperpolarization was investigated in rat middle cerebral arteries (MCA). Methods: MCAs were mounted in a wire myograph. The PAR2 agonist, SLIGRL was used to stimulate EDH responses, assessed by simultaneous measurement of smooth muscle membrane potential and tension. TP expression was assessed with rt-PCR and immunofluorescence. Results: Immunofluorescence detected TP in the endothelial cell layer of MCA. Vasoconstriction to the TP agonist, U46619 was reduced by Rho kinase inhibition. TP receptor stimulation lead to loss of KCa2.3 mediated hyperpolarization, an effect that was reversed by Rho kinase inhibitors or simvastatin. KCa2.3 activity was lost in L-NAME-treated arteries, but was restored by Rho kinase inhibition or statin treatment. The restorative effect of simvastatin was blocked after incubation with geranylgeranyl-pyrophosphate to circumvent loss of isoprenylation. Conclusions: Rho/Rho kinase signalling following TP stimulation and L-NAME regulates endothelial cell KCa2.3 function. The ability of statins to prevent isoprenylation and perhaps inhibit of Rho restores/protects the input of KCa2.3 to EDH in the MCA, and represents a beneficial pleiotropic effect of statin treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serine proteases generated during injury and inflammation cleave protease-activated receptor 2 (PAR(2)) on primary sensory neurons to induce neurogenic inflammation and hyperalgesia. Hyperalgesia requires sensitization of transient receptor potential vanilloid (TRPV) ion channels by mechanisms involving phospholipase C and protein kinase C (PKC). The protein kinase D (PKD) serine/threonine kinases are activated by diacylglycerol and PKCs and can phosphorylate TRPV1. Thus, PKDs may participate in novel signal transduction pathways triggered by serine proteases during inflammation and pain. However, it is not known whether PAR(2) activates PKD, and the expression of PKD isoforms by nociceptive neurons is poorly characterized. By using HEK293 cells transfected with PKDs, we found that PAR(2) stimulation promoted plasma membrane translocation and phosphorylation of PKD1, PKD2, and PKD3, indicating activation. This effect was partially dependent on PKCepsilon. By immunofluorescence and confocal microscopy, with antibodies against PKD1/PKD2 and PKD3 and neuronal markers, we found that PKDs were expressed in rat and mouse dorsal root ganglia (DRG) neurons, including nociceptive neurons that expressed TRPV1, PAR(2), and neuropeptides. PAR(2) agonist induced phosphorylation of PKD in cultured DRG neurons, indicating PKD activation. Intraplantar injection of PAR(2) agonist also caused phosphorylation of PKD in neurons of lumbar DRG, confirming activation in vivo. Thus, PKD1, PKD2, and PKD3 are expressed in primary sensory neurons that mediate neurogenic inflammation and pain transmission, and PAR(2) agonists activate PKDs in HEK293 cells and DRG neurons in culture and in intact animals. PKD may be a novel component of a signal transduction pathway for protease-induced activation of nociceptive neurons and an important new target for antiinflammatory and analgesic therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The E3 ligase c-Cbl ubiquitinates protease-activated receptor 2 (PAR(2)), which is required for post-endocytic sorting of PAR(2) to lysosomes, where degradation arrests signaling. The mechanisms of post-endocytic sorting of ubiquitinated receptors are incompletely understood. Here, we investigated the role of hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), in post-endocytic sorting and signaling of PAR(2). In HEK-PAR(2) cells, PAR(2) activating peptide (PAR(2)-AP) induced PAR(2) trafficking from the cell surface to early endosomes containing endogenous HRS, and then to lysosomes. HRS overexpression or knockdown with small interfering RNA caused formation of enlarged HRS-positive endosomes, where activated PAR(2) and c-Cbl accumulated, and PAR(2) failed to traffic to lysosomes. Overexpression of HRS prevented PAR(2)-AP-induced degradation of PAR(2), as determined by Western blotting. Overexpression of HRS mutant lacking an ubiquitin-binding motif similarly caused retention of PAR(2) in enlarged endosomes. Moreover, HRS overexpression or knockdown caused retention of ubiquitin-resistant PAR(2)Delta14K/R in enlarged HRS-containing endosomes, preventing recycling and resensitization of PAR(2)Delta14K/R. HRS overexpression or knockdown similarly prevented lysosomal trafficking and recycling of calcitonin receptor-like receptor, a non-ubiquitinated receptor that traffics to lysosomes after sustained activation and recycles after transient activation. Thus, HRS plays a critically important role in the post-endocytic sorting of single receptors, PAR(2) and CLR, to both degradative and recycling pathways. This sorting role for HRS is independent of its ubiquitin-interacting motif, and it can regulate trafficking of both ubiquitinated and non-ubiquitinated PAR(2) and non-ubiquitinated CLR. The ultimate sorting decision to degradative or recycling pathways appears to occur downstream from HRS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteases that are released during inflammation and injury cleave protease-activated receptor 2 (PAR2) on primary afferent neurons to cause neurogenic inflammation and hyperalgesia. PAR2-induced thermal hyperalgesia depends on sensitization of transient receptor potential vanilloid receptor 1 (TRPV1), which is gated by capsaicin, protons and noxious heat. However, the signalling mechanisms by which PAR2 sensitizes TRPV1 are not fully characterized. Using immunofluorescence and confocal microscopy, we observed that PAR2 was colocalized with protein kinase (PK) Cepsilon and PKA in a subset of dorsal root ganglia neurons in rats, and that PAR2 agonists promoted translocation of PKCepsilon and PKA catalytic subunits from the cytosol to the plasma membrane of cultured neurons and HEK 293 cells. Subcellular fractionation and Western blotting confirmed this redistribution of kinases, which is indicative of activation. Although PAR2 couples to phospholipase Cbeta, leading to stimulation of PKC, we also observed that PAR2 agonists increased cAMP generation in neurons and HEK 293 cells, which would activate PKA. PAR2 agonists enhanced capsaicin-stimulated increases in [Ca2+]i and whole-cell currents in HEK 293 cells, indicating TRPV1 sensitization. The combined intraplantar injection of non-algesic doses of PAR2 agonist and capsaicin decreased the latency of paw withdrawal to radiant heat in mice, indicative of thermal hyperalgesia. Antagonists of PKCepsilon and PKA prevented sensitization of TRPV1 Ca2+ signals and currents in HEK 293 cells, and suppressed thermal hyperalgesia in mice. Thus, PAR2 activates PKCepsilon and PKA in sensory neurons, and thereby sensitizes TRPV1 to cause thermal hyperalgesia. These mechanisms may underlie inflammatory pain, where multiple proteases are generated and released.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) infection is associated with dysregulation of both lipid and glucose metabolism. As well as contributing to viral replication, these perturbations influence the pathogenesis associated with the virus, including steatosis, insulin resistance, and type 2 diabetes. AMP-activated protein kinase (AMPK) plays a key role in regulation of both lipid and glucose metabolism. We show here that, in cells either infected with HCV or harboring an HCV subgenomic replicon, phosphorylation of AMPK at threonine 172 and concomitant AMPK activity are dramatically reduced. We demonstrate that this effect is mediated by activation of the serine/threonine kinase, protein kinase B, which inhibits AMPK by phosphorylating serine 485. The physiological significance of this inhibition is demonstrated by the observation that pharmacological restoration of AMPK activity not only abrogates the lipid accumulation observed in virus-infected and subgenomic replicon-harboring cells but also efficiently inhibits viral replication. These data demonstrate that inhibition of AMPK is required for HCV replication and that the restoration of AMPK activity may present a target for much needed anti-HCV therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycogen synthase kinase 3 (GSK3, of which there are two isoforms, GSK3alpha and GSK3beta) was originally characterized in the context of regulation of glycogen metabolism, though it is now known to regulate many other cellular processes. Phosphorylation of GSK3alpha(Ser21) and GSK3beta(Ser9) inhibits their activity. In the heart, emphasis has been placed particularly on GSK3beta, rather than GSK3alpha. Importantly, catalytically-active GSK3 generally restrains gene expression and, in the heart, catalytically-active GSK3 has been implicated in anti-hypertrophic signalling. Inhibition of GSK3 results in changes in the activities of transcription and translation factors in the heart and promotes hypertrophic responses, and it is generally assumed that signal transduction from hypertrophic stimuli to GSK3 passes primarily through protein kinase B/Akt (PKB/Akt). However, recent data suggest that the situation is far more complex. We review evidence pertaining to the role of GSK3 in the myocardium and discuss effects of genetic manipulation of GSK3 activity in vivo. We also discuss the signalling pathways potentially regulating GSK3 activity and propose that, depending on the stimulus, phosphorylation of GSK3 is independent of PKB/Akt. Potential GSK3 substrates studied in relation to myocardial hypertrophy include nuclear factors of activated T cells, beta-catenin, GATA4, myocardin, CREB, and eukaryotic initiation factor 2Bvarepsilon. These and other transcription factor substrates putatively important in the heart are considered. We discuss whether cardiac pathologies could be treated by therapeutic intervention at the GSK3 level but conclude that any intervention would be premature without greater understanding of the precise role of GSK3 in cardiac processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MICALs (molecules interacting with CasL) are atypical multidomain flavoenzymes with diverse cellular functions. The molecular pathways employed by MICAL proteins to exert their cellular effects remain largely uncharacterized. Via an unbiased proteomics approach, we identify MICAL-1 as a binding partner of NDR (nuclear Dbf2-related) kinases. NDR1/2 kinases are known to mediate apoptosis downstream of the mammalian Ste-20-like kinase MST1, and ablation of NDR1 in mice predisposes the mice to cancer as a result of compromised apoptosis. MST1 phosphorylates NDR1/2 kinases at their hydrophobic motif, thereby facilitating full NDR kinase activity and function. However, if and how this key phosphorylation event is regulated are unknown. Here we show that MICAL-1 interacts with the hydrophobic motif of NDR1/2 and that overexpression or knockdown of MICAL-1 reduces or augments NDR kinase activation or activity, respectively. Surprisingly, MICAL-1 is a phosphoprotein but not an NDR or MST1 substrate. Rather, MICAL-1 competes with MST1 for NDR binding and thereby antagonizes MST1-induced NDR activation. In line with this inhibitory effect, overexpression or knockdown of MICAL-1 inhibits or enhances, respectively, NDR-dependent proapoptotic signaling induced by extrinsic stimuli. Our findings unveil a previously unknown biological role for MICAL-1 in apoptosis and define a novel negative regulatory mechanism of MST-NDR signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Firing of action potentials in excitable cells accelerates ATP turnover. The voltage-gated potassium channel Kv2.1 regulates action potential frequency in central neurons, whereas the ubiquitous cellular energy sensor AMP-activated protein kinase (AMPK) is activated by ATP depletion and protects cells by switching off energy-consuming processes. We show that treatment of HEK293 cells expressing Kv2.1 with the AMPK activator A-769662 caused hyperpolarizing shifts in the current-voltage relationship for channel activation and inactivation. We identified two sites (S440 and S537) directly phosphorylated on Kv2.1 by AMPK and, using phosphospecific antibodies and quantitative mass spectrometry, show that phosphorylation of both sites increased in A-769662-treated cells. Effects of A-769662 were abolished in cells expressing Kv2.1 with S440A but not with S537A substitutions, suggesting that phosphorylation of S440 was responsible for these effects. Identical shifts in voltage gating were observed after introducing into cells, via the patch pipette, recombinant AMPK rendered active but phosphatase-resistant by thiophosphorylation. Ionomycin caused changes in Kv2.1 gating very similar to those caused by A-769662 but acted via a different mechanism involving Kv2.1 dephosphorylation. In cultured rat hippocampal neurons, A-769662 caused hyperpolarizing shifts in voltage gating similar to those in HEK293 cells, effects that were abolished by intracellular dialysis with Kv2.1 antibodies. When active thiophosphorylated AMPK was introduced into cultured neurons via the patch pipette, a progressive, time-dependent decrease in the frequency of evoked action potentials was observed. Our results suggest that activation of AMPK in neurons during conditions of metabolic stress exerts a protective role by reducing neuronal excitability and thus conserving energy.