908 resultados para innate and adaptive immunity
Resumo:
Gas6 downregulates the activation state of macrophages and thereby their production of proinflammatory cytokines induced by various stimuli. We aimed to determine whether Gas6 is involved in sepsis. We measured Gas6 plasma levels in 13 healthy subjects, 29 patients with severe sepsis, and 18 patients with non-infectious inflammatory diseases. Gas6 level was higher in septic patients than in control groups (P 0.0001). The sensitivity and specificity of Gas6 levels to predict fatal outcome were 83% and 88%. We next investigated whether Gas6 affects cytokine production and outcome in experimental models of endotoxemia and peritonitis in wild-type (WT) and Gas6-/- mice. Circulating levels of Gas6 after LPS 25mg/kg i.p. peaked at 1 hour (P<0.001). Similarly, TNF- was higher in Gas6-/- than in WT mice 1 hour after LPS (P<0.05). Furthermore, 62 anti- and pro-inflammatory cytokines were quantified in plasma after LPS injection. Their levels were globally higher in Gas6-/- plasma after LPS, 47/62 cytokines being at least 50% higher in Gas6-/- than in WT plasma after 1 hour. Mortality induced by 25mg/kg LPS was 25% in WT versus 87% in Gas6-/- mice (P<0.05). LPS-induced mortality in Gas6 receptors Axl-/-, Tyro3-/- and Merkd was also enhanced when compared to WT mice (P<0.001). In peritonitis models (cecal ligation and puncture, CLP, and i.p. injection of E. coli), Gas6 plasma levels increased and remained elevated at least 24 hours. CLP increased mortality in Gas6-/- mice. Finally, we explored the role of Gas6 in LPS-treated macrophages. We found that Gas6 was released by LPS-stimulated WT macrophages and that Gas6-/- macrophages produced more TNF- and IL-6 than WT macrophages. Cytokine release by Gas6-/- macrophages was higher than by WT macrophages (cytokine array). Adjunction of recombinant Gas6 to the culture medium of Gas6-/- macrophages diminished the cytokine production to WT levels. In LPS-treated Gas6-/- macrophages, Akt and Erk1/2 phosphorylation was reduced whereas p38 and NF B activation was enhanced. Thus, in septic patients, elevated Gas6 levels were associated with fatal outcome. In mice, they raised in experimental endotoxemia and peritonitis models, and correlated also with sepsis severity. However, Gas6-/- mice survival in these models was reduced compared to WT. Gas6 secreted by macrophages in response to LPS activated Akt and restrained p38 and NF B activation, thereby dampening macrophage activation. Altogether these data suggest that, during endotoxemia, Gas6-/- mice phenotype resembles that of mice which have undergone PI3K inhibition, indicating that Gas6 is a major modulator of innate immunity.
Resumo:
Loss-of-function variants in innate immunity genes are associated with Mendelian disorders in the form of primary immunodeficiencies. Recent resequencing projects report that stop-gains and frameshifts are collectively prevalent in humans and could be responsible for some of the inter-individual variability in innate immune response. Current computational approaches evaluating loss-of-function in genes carrying these variants rely on gene-level characteristics such as evolutionary conservation and functional redundancy across the genome. However, innate immunity genes represent a particular case because they are more likely to be under positive selection and duplicated. To create a ranking of severity that would be applicable to innate immunity genes we evaluated 17,764 stop-gain and 13,915 frameshift variants from the NHLBI Exome Sequencing Project and 1,000 Genomes Project. Sequence-based features such as loss of functional domains, isoform-specific truncation and nonsense-mediated decay were found to correlate with variant allele frequency and validated with gene expression data. We integrated these features in a Bayesian classification scheme and benchmarked its use in predicting pathogenic variants against Online Mendelian Inheritance in Man (OMIM) disease stop-gains and frameshifts. The classification scheme was applied in the assessment of 335 stop-gains and 236 frameshifts affecting 227 interferon-stimulated genes. The sequence-based score ranks variants in innate immunity genes according to their potential to cause disease, and complements existing gene-based pathogenicity scores. Specifically, the sequence-based score improves measurement of functional gene impairment, discriminates across different variants in a given gene and appears particularly useful for analysis of less conserved genes.
Resumo:
Hemolytic episodes such as sickle cell disease, malaria and ischemia-reperfusion occurrence are often associated to the statement of an inflammatory response which may develop or not to a chronic inflammatory status. Although these pathological states are triggered by distinct etiological agents, all of them are associated to high levels of free heme in circulation. In this review, we aim to focus the very recent achievements that have led to the statement of free heme as a proinflammatory molecule, which may play a central role during the onset and/or persistance of inflammation during these pathologies.
Resumo:
Hemolytic episodes such as sickle cell disease, malaria and ischemia-reperfusion occurrence are often associated to the statement of an inflammatory response which may develop or not to a chronic inflammatory status. Although these pathological states are triggered by distinct etiological agents, all of them are associated to high levels of free heme in circulation. In this review, we aim to focus the very recent achievements that have led to the statement of free heme as a proinflammatory molecule, which may play a central role during the onset and/or persistance of inflammation during these pathologies.
Resumo:
Caspases are best known for their role in apoptosis. More recently, they have gained prominence as critical mediators of innate immune responses. The so-called 'inflammatory caspases' include human caspase-1, -4, -5 and -12 and murine caspase-1, -11 and -12. Of these, caspase-1 is best characterized and serves as the prototype for our understanding of the processing, activation and function of inflammatory caspases. Like their apoptotic counterparts, inflammatory caspases are produced as inactive zymogens and require activation to become proteolytically active. Caspase-1 is activated within the inflammasome, a large cytosolic protein complex that is induced by a growing number of endogenous, microbial, chemical or environmental stimuli. The importance of caspase-1 in initiating innate immune responses is demonstrated by its role in cleaving pro-IL-1 beta and pro-IL-18 to their biologically active forms. New functions have also been implicated, as these proteases and the mechanisms underlying their activation and regulation emerge as important mediators of human health and disease.
Resumo:
Adenovirus is a nonenveloped dsDNA virus that activates intracellular innate immune pathways. In vivo, adenovirus-immunized mice displayed an enhanced innate immune response and diminished virus-mediated gene delivery following challenge with the adenovirus vector AdLacZ suggesting that antiviral Abs modulate viral interactions with innate immune cells. Under naive serum conditions in vitro, adenovirus binding and internalization in macrophages and the subsequent activation of innate immune mechanisms were inefficient. In contrast to the neutralizing effect observed in nonhematopoietic cells, adenovirus infection in the presence of antiviral Abs significantly increased FcR-dependent viral internalization in macrophages. In direct correlation with the increased viral internalization, antiviral Abs amplified the innate immune response to adenovirus as determined by the expression of NF-kappaB-dependent genes, type I IFNs, and caspase-dependent IL-1beta maturation. Immune serum amplified TLR9-independent type I IFN expression and enhanced NLRP3-dependent IL-1beta maturation in response to adenovirus, confirming that antiviral Abs specifically amplify intracellular innate pathways. In the presence of Abs, confocal microscopy demonstrated increased targeting of adenovirus to LAMP1-positive phagolysosomes in macrophages but not epithelial cells. These data show that antiviral Abs subvert natural viral tropism and target the adenovirus to phagolysosomes and the intracellular innate immune system in macrophages. Furthermore, these results illustrate a cross-talk where the adaptive immune system positively regulates the innate immune system and the antiviral state.
Resumo:
Les virus ont besoin d’interagir avec des facteurs cellulaires pour se répliquer et se propager dans les cellules d’hôtes. Une étude de l'interactome des protéines du virus d'hépatite C (VHC) par Germain et al. (2014) a permis d'élucider de nouvelles interactions virus-hôte. L'étude a également démontré que la majorité des facteurs de l'hôte n'avaient pas d'effet sur la réplication du virus. Ces travaux suggèrent que la majorité des protéines ont un rôle dans d'autres processus cellulaires tel que la réponse innée antivirale et ciblées pas le virus dans des mécanismes d'évasion immune. Pour tester cette hypothèse, 132 interactant virus-hôtes ont été sélectionnés et évalués par silençage génique dans un criblage d'ARNi sur la production interferon-beta (IFNB1). Nous avons ainsi observé que les réductions de l'expression de 53 interactants virus-hôte modulent la réponse antivirale innée. Une étude dans les termes de gène d'ontologie (GO) démontre un enrichissement de ces protéines au transport nucléocytoplasmique et au complexe du pore nucléaire. De plus, les gènes associés avec ces termes (CSE1L, KPNB1, RAN, TNPO1 et XPO1) ont été caractérisé comme des interactant de la protéine NS3/4A par Germain et al. (2014), et comme des régulateurs positives de la réponse innée antivirale. Comme le VHC se réplique dans le cytoplasme, nous proposons que ces interactions à des protéines associées avec le noyau confèrent un avantage de réplication et bénéficient au virus en interférant avec des processus cellulaire tel que la réponse innée. Cette réponse innée antivirale requiert la translocation nucléaire des facteurs transcriptionnelles IRF3 et NF-κB p65 pour la production des IFNs de type I. Un essai de microscopie a été développé afin d'évaluer l’effet du silençage de 60 gènes exprimant des protéines associés au complexe du pore nucléaire et au transport nucléocytoplasmique sur la translocation d’IRF3 et NF-κB p65 par un criblage ARNi lors d’une cinétique d'infection virale. En conclusion, l’étude démontre qu’il y a plusieurs protéines qui sont impliqués dans le transport de ces facteurs transcriptionnelles pendant une infection virale et peut affecter la production IFNB1 à différents niveaux de la réponse d'immunité antivirale. L'étude aussi suggère que l'effet de ces facteurs de transport sur la réponse innée est peut être un mécanisme d'évasion par des virus comme VHC.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Insects are useful models for the study of innate immune reactions and development. The distinction between recognition mechanisms preceding the breakdown of apoptotic cells during metamorphosis, and the breakdown of cells in response to infections, is unclear. Hemolin, a Lepidopteran member of the immunoglobulin superfamily, is a candidate molecule in self/nonself recognition. This thesis investigates hemolin function and hemolin gene regulation at a molecular level. We investigated the binding and cell adhesion properties of hemolin from H. cecropia and demonstrated that the proteins could homodimerize in presence of calcium. Moreover, a higher molecular weight membrane form of hemolin was present on hemocytes. These results, taken together with an earlier finding that soluble hemolin inhibits hemocyte adhesion, indicated that the secreted hemolin could modulate hemocyte aggregation in a competitive manner in the blood. In addition, hemolin was expressed in different tissues and at different developmental stages. Since hemolin is expressed both during development and during the immune response, its different regulatory factors must act in concert. We found that the third intron contains an enhancer, through which Dif, C/EBP and HMGI synergistically activate a reporter construct in vitro. We concluded that the enhancer is used during infection, since the κB-site is crucial for an immune response. Interestingly, we also found that the active form of the steroid hormone, ecdysone, induces the hemolin gene transcription in vivo, and in addition, acts synergistically during bacterial infection. Preliminary in vivo results indicate a secondary effect of ecdysone and the importance of hormone receptor elements in the upstream promoter region of hemolin. To explore the use of Drosophila as a genetic tool for understanding hemolin function and regulation, we sought to isolate the functional homologue in this species. A fly cDNA library in yeast was screened using H. cecropia hemolin as bait. The screen was not successful. However, it did lead to the discovery of a Drosophila protein with true binding specificity for hemolin. Subsequent characterization revealed a new, highly conserved gene, which we named yippee. Yippee is distantly related to zinc finger proteins and represents a novel family of proteins present in numerous eukaryotes, including fungi, plants and humans. Notably, when the Drosophila genome sequence was revealed, no hemolin orthologue could be detected. Finally, an extensive Drosophila genome chip analysis was initiated. The goal was to investigate the Drosophila immune response, and, in contrast to earlier studies of artificially injected flies, to examine a set of natural microbes, orally and externally applied. In parallel experiments viruses, bacteria, fungi and parasites were compared to unchallenged controls. We obtained a unique set of genes that were up-regulated in the response to the parasite Octosporea muscadomesticae and to the fungus Beauveria bassiana. We expect both down-regulated and up-regulated genes to serve as a source for the discovery of new effector molecules, in particular those that are active against parasites and fungi.
Resumo:
Nucleotide-binding and oligomerization domain (NOD)-like receptors constitute a first line of defense against invading bacteria. X-linked Inhibitor of Apoptosis (XIAP) is implicated in the control of bacterial infections, and mutations in XIAP are causally linked to immunodeficiency in X-linked lymphoproliferative syndrome type-2 (XLP-2). Here, we demonstrate that the RING domain of XIAP is essential for NOD2 signaling and that XIAP contributes to exacerbation of inflammation-induced hepatitis in experimental mice. We find that XIAP ubiquitylates RIPK2 and recruits the linear ubiquitin chain assembly complex (LUBAC) to NOD2. We further show that LUBAC activity is required for efficient NF-κB activation and secretion of proinflammatory cytokines after NOD2 stimulation. Remarkably, XLP-2-derived XIAP variants have impaired ubiquitin ligase activity, fail to ubiquitylate RIPK2, and cannot facilitate NOD2 signaling. We conclude that XIAP and LUBAC constitute essential ubiquitin ligases in NOD2-mediated inflammatory signaling and propose that deregulation of NOD2 signaling contributes to XLP-2 pathogenesis.
Resumo:
Cardiovascular disease is a complex disorder involving multiple pathophysiological processes, several of which involve activation of toll-like receptors (TLRs) of the innate immune system. As sentinels of innate immunity TLRs are nonclonally germline-encoded molecular pattern recognition receptors that recognize exogenous as well as tissue-derived molecular dangers signals promoting inflammation. In addition to their expression in immune cells, TLRs are found in other tissues and cell types including cardiomyocytes, endothelial and vascular smooth muscle cells. TLRs are differentially regulated in various cell types by several cardiovascular risk factors such as hypercholesterolemia, hyperlipidemia, and hyperglycemia and may represent a key mechanism linking chronic inflammation, cardiovascular disease progression, and activation of the immune system. Modulation of TLR signaling by specific TLR agonists or antagonists, alone or in combination, may be a useful therapeutic approach to treat various cardiovascular inflammatory conditions such as atherosclerosis, peripheral arterial disease, secondary microvascular complications of diabetes, autoimmune disease, and ischemia reperfusion injury. In this paper we discuss recent developments and current evidence for the role of TLR in cardiovascular disease as well as the therapeutic potential of various compounds on inhibition of TLR-mediated inflammatory responses.
Microbiota exposure during the pregnancy and the development of the innate immunity of the offspring
Microbiota exposure during the pregnancy and the development of the innate immunity of the offspring
Resumo:
Benzoxazinoids (BXs), such as 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA), are secondary metabolites in grasses. The first step in BX biosynthesis converts indole-3-glycerol phosphate into indole. In maize (Zea mays), this reaction is catalyzed by either BENZOXAZINELESS1 (BX1) or INDOLE GLYCEROL PHOSPHATE LYASE (IGL). The Bx1 gene is under developmental control and is mainly responsible for BX production, whereas the Igl gene is inducible by stress signals, such as wounding, herbivory, or jasmonates. To determine the role of BXs in defense against aphids and fungi, we compared basal resistance between Bx1 wild-type and bx1 mutant lines in the igl mutant background, thereby preventing BX production from IGL. Compared to Bx1 wild-type plants, BX-deficient bx1 mutant plants allowed better development of the cereal aphid Rhopalosiphum padi, and were affected in penetration resistance against the fungus Setosphaeria turtica. At stages preceding major tissue disruption, R. padi and S. turtica elicited increased accumulation of DIMBOA-glucoside, DIMBOA, and 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one-glucoside (HDMBOA-glc), which was most pronounced in apoplastic leaf extracts. Treatment with the defense elicitor chitosan similarly enhanced apoplastic accumulation of DIMBOA and HDMBOA-glc, but repressed transcription of genes controlling BX biosynthesis downstream of BX1. This repression was also obtained after treatment with the BX precursor indole and DIMBOA, but not with HDMBOA-glc. Furthermore, BX-deficient bx1 mutant lines deposited less chitosan-induced callose than Bx1 wild-type lines, whereas apoplast infiltration with DIMBOA, but not HDMBOA-glc, mimicked chitosan-induced callose. Hence, DIMBOA functions as a defense regulatory signal in maize innate immunity, which acts in addition to its well-characterized activity as a biocidal defense metabolite.