907 resultados para injection,
Resumo:
STUDY QUESTION: What is the self-reported use of in vitro fertilization (IVF) and ovulation induction (OI) in comparison with insurance claims by Australian women aged 28–36 years? SUMMARY ANSWER: The self-reported use of IVF is quite likely to be valid; however, the use of OI is less well reported. WHAT IS KNOWN AND WHAT THIS PAPER ADDS: Population-based research often relies on the self-reported use of IVF and OI because access to medical records can be difficult and the data need to include sufficient personal identifying information for linkage to other data sources. There have been few attempts to explore the reliability of the self-reported use of IVF and OI using the linkage to medical insurance claims for either treatment. STUDY DESIGN: This prospective, population-based, longitudinal study included the cohort of women born during 1973–1978 and participating in the Australian Longitudinal Study on Women's Health (ALSWH) (n = 14247). From 1996 to 2009, participants were surveyed up to five times. PARTICIPANTS AND SETTING: Participants self-reported their use of IVF or OI in two mailed surveys when aged 28–33 and 31–36 years (n = 7280), respectively. This study links self-report survey responses and claims for treatment or medication from the universal national health insurance scheme (i.e. Medicare Australia). MAIN RESULTS AND THE ROLE OF CHANCE: Comparisons between self-reports and claims data were undertaken for all women consenting to the linkage (n = 3375). The self-reported use of IVF was compared with claims for OI for IVF (Kappa, K = 0.83), oocyte collection (K = 0.82), sperm preparation (K = 0.83), intracytoplasmic sperm injection (K = 0.40), fresh embryo transfers (K = 0.82), frozen embryo transfers (K = 0.64) and OI for IVF medication (K = 0.17). The self-reported use of OI was compared with ovulation monitoring (K = 0.52) and OI medication (K = 0.71). BIAS, CONFOUNDING AND OTHER REASONS FOR CAUTION: There is a possibility of selection bias due to the inclusion criteria for participants in this study: (1) completion of the last two surveys in a series of five and (2) consent to the linkage of their responses with Medicare data. GENERALIZABILITY TO OTHER POPULATIONS: The results are relevant to questionnaire-based research studies with infertile women in developed countries. STUDY FUNDING/COMPETING INTEREST(S): ALSWH is funded by the Australian Government Department of Health and Ageing. This research is funded by a National Health and Medical Research Council Centre of Research Excellence grant.
Resumo:
The behavior of plane fountains, resulting from the injection of dense fluid (water) upwards into a large container of homogeneous fluid of lower density (air),was investigated. In this study the behavior of fountains was examined numerically and experimentally for different Froude and Reynolds numbers. The flow rate and nozzle diameter of the inlet of the fountain was varied to cover a wide range of Reynolds and Froude numbers. The effect of inclination angle of the inlet for different nozzle diameter and flow rate on fountain behavior was observed. It was found that the height of the fountain greatly depends on Froude number. An empirical correlation was developed for non-dimensional fountain height with Froude number. However the non-dimensional fountain height can more accurately be represented when regressed with both Reynolds and Froude number by the following relationship H/r=exp(5.94)*Re^-0.72*Fr^2.26. The result are compared with previous numerical and experimental results and found to be consistent.
Resumo:
Nutritional practices that promote good health and optimal athletic performance are of interest to athletes, coaches, exercise scientists and dietitians. Probiotic supplements modulate the intestinal microbial flora and offer promise as a practical means of enhancing gut and immune function. The intestinal microbial flora consists of diverse bacterial species that inhabit the gastrointestinal tract. These bacteria are integral to the ontogeny and regulation of the immune system, protection of the body from injection, and maintenance of intestinal homeostasis. The interaction of the gut microbial flora with intestinal epithelial cells and immune cells exerts beneficial effects on the upper respiratory tract, skin and uro-genital tract. The capacity for probiotics to modulate perturbations in immune function after exercise highlight their potential for use in individuals exposed to high degrees of physical and environment stress. Future studies are required to address issues of dose-response in various exercise settings, the magnitude of species-specific effects, mechanisms of action and clinical outcomes in terms of health and performance.
Resumo:
Protease-activated receptor-2 (PAR2) is a G protein coupled receptor (GPCR) that is activated by proteolytic cleavage of its amino terminal domain by trypsin-like serine proteases. Cleavage of this receptor exposes a neoepitope, termed the tethered ligand (TL), which binds intramolecularly within the receptor to stimulate signal transduction via coupled G proteins. PAR2-mediated signal transduction is also experimentally stimulated by hexapeptides (agonist peptides; APs) that are homologous to the TL sequence. Due to the irreversible nature of PAR2 proteolysis, downstream signal transduction is tightly regulated. Following activation, PAR2 is rapidly uncoupled from downstream signalling by the post-translational modifications phosphorylation and ubiquination which facilitate interactions with â- arrestin. This scaffolding protein couples PAR2 to the internalisation machinery initiating its desensitisation and trafficking through the early and late endosomes followed by receptor degradation. PAR2 is widely expressed in mammalian tissues with key roles for this receptor in cardiovascular, respiratory, nervous and musculoskeletal systems. This receptor has also been linked to pathological states with aberrant expression and signalling noted in several cancers. In prostate cancer, PAR2 signalling induces migration and proliferation of tumour derived cell lines, while elevated receptor expression has been noted in malignant tissues. Importantly, a role for this receptor has also been suggested in prostate cancer bone metastasis as coexpression of PAR2 and a proteolytic activator has been demonstrated by immunohistochemical analysis. Based on these data, the primary focus of this project has been on two aspects of PAR2 biology. The first is characterisation of cellular mechanisms that regulate PAR2 signalling and trafficking. The second aspect is the role of this receptor in prostate cancer bone metastasis. In addition, to permit these studies, it was first necessary to evaluate the specificity of the commercially available anti-PAR2 antibodies SAM11, C17, N19 and H99. The evaluation of the four commercially available antibodies was assessed using four techniques: immunoprecipitation; Western blot analysis; immunofluorescence; and flow cytometry. These approaches demonstrated that three of the antibodies efficiently detect ectopically expressed PAR2 by each of these techniques. A significant finding from this study was that N19 was the only antibody able to specifically detect N-glycosylated endogenous PAR2 by Western blot analysis. This analysis was performed on lysates from prostate cancer derived cell lines and tissue derived from wildtype and PAR2 knockout mice. Importantly, further evaluation demonstrated that this antibody also efficiently detects endogenous PAR2 at the cell surface by flow cytometry. The anti-PAR2 antibody N19 was used to explore the in vitro role of palmitoylation, the post-translational addition of palmitate, in PAR2 signalling, trafficking, cell surface expression and desensitization. Significantly, use of the palmitoylation inhibitor 2-bromopalmitate indicated that palmitate addition is important in trafficking of PAR2 endogenously expressed by prostate cancer cell lines. This was supported by palmitate labelling experiments using two approaches which showed that PAR2 stably expressed by CHO cells is palmitoylated and that palmitoylation occurs on cysteine 361. Another key finding from this study is that palmitoylation is required for optimal PAR2 signalling as Ca2+ flux assays indicated that in response to trypsin agonism, palmitoylation deficient PAR2 is ~9 fold less potent than wildtype receptor with a reduction of about 33% in the maximum signal induced via the mutant receptor. Confocal microscopy, flow cytometry and cell surface biotinylation analyses demonstrated that palmitoylation is required for efficient cell surface expression of PAR2. Importantly, this study also identified that palmitoylation of this receptor within the Golgi apparatus is required for efficient agonist-induced rab11amediated trafficking of PAR2 to the cell surface. Interestingly, palmitoylation is also required for receptor desensitization, as agonist-induced â-arrestin recruitment and receptor degradation were markedly reduced in CHO-PAR2-C361A cells compared with CHO-PAR2 cells. Collectively, these data provide new insights on the life cycle of PAR2 and demonstrate that palmitoylation is critical for efficient signalling, trafficking, cell surface localization and degradation of this receptor. This project also evaluated PAR2 residues involved in ligand docking. Although the extracellular loop (ECL)2 of PAR2 is known to be required for agonist-induced signal transduction, the binding pocket for receptor agonists remains to be determined. In silico homology modelling, based on a crystal structure for the prototypical GPCR rhodopsin, and ligand docking were performed to identify PAR2 transmembrane (TM) amino acids potentially involved in agonist binding. These methods identified 12 candidate residues that were mutated to examine the binding site of the PAR2 TL, revealed by trypsin cleavage, as well as of the soluble ligands 2f-LIGRLO-NH2 and GB110, which are both structurally based on the AP SLIGRLNH2. Ligand binding was evaluated from the impact of the mutated residues on PAR2-mediated calcium mobilisation. An important finding from these experiments was that mutation of residues Y156 and Y326 significantly reduced 2f-LIGRLO-NH2 and GB110 agonist activity. L307 was also important for GB110 activity. Intriguingly, mutation of PAR2 residues did not alter trypsin-induced signalling to the same extent as for the soluble agonists. The reason for this difference remains to be further examined by in silico and in vitro experimentation and, potentially, crystal structure studies. However, these findings identified the importance of TM domains in PAR2 ligand docking and will enhance the design of both PAR2 agonists and potentially agents to inhibit signalling (antagonists). The potential importance of PAR2 in prostate cancer bone metastasis was examined using a mouse model. In patients, prostate cancer bone metastases cause bone growth by disrupting bone homeostasis. In an attempt to mimic prostate cancer growth in bone, PAR2 responsive 22Rv1 prostate cancer cells, which form mixed osteoblastic and osteolytic lesions, were injected into the proximal aspect of mouse tibiae. A role for PAR2 was assessed by treating these mice with the recently developed PAR2 antagonist GB88. As controls, animals bearing intra-tibial tumours were also treated with vehicle (olive oil) or the prostate cancer chemotherapeutic docetaxel. The effect of these treatments on bone was examined radiographically and by micro-CT. Consistent with previous studies, 22Rv1 tumours caused osteoblastic periosteal spicule formation and concurrent osteolytic bone loss. Significantly, blockade of PAR2 signalling reduced the osteoblastic and osteolytic phenotype of 22Rv1 tumours in bone. No bone defects were detected in mice treated with docetaxel. These qualitative data will be followed in the future by quantitative micro-CT analysis as well as histology and histomorphometry analysis of already collected tissues. Nonetheless, these preliminary experiments highlight a potential role for PAR2 in prostate cancer growth in bone. In summary, in vitro studies have defined mechanisms regulating PAR2 activation, downstream signalling and trafficking and in vivo studies point to a potential role for this receptor in prostate cancer bone metastasis. The outcomes of this project are that a greater understanding of the biology of PAR2 may lead to the development of strategies to modulate the function of this receptor in disease.
Resumo:
Assisted Reproductive Technologies (ART) offer a wide range of techniques that have the potential to augment efforts to conserve and manage endangered amphibians and improve wild and captive population numbers. Gametes and tissues of species nearing endangered or extinct status can be cryopreserved and stored in gene banks, to provide material that can be utilised in the future as ART methods are refined. The Spotted Grass Frog, Limnodynastes tasmaniensis, is an abundant amphibian species in South-Eastern Australia of the family Myobatrachidae, that is suitable for the development of ART systems that can be applied to the threatened and endangered myobatrachid and other amphibian species native to Australia. The aim of this study was to advance the understanding of ovulation, fertilisation and embryo nic development of Lim. tasmaniensis and in vitro manipulations of reproduction and development for use in the development of advanced ART procedures such as intracytoplasmic spermatozoon injection (ICSI), androgenesis and nuclear transfer. Ovulation in amphibians can be induced by protocols utilising natural or synthetic hormones. All protocols tested on Lim. tasmaniensis in this study required two injections and the most effective protocols continued to require a first injection of pituitary extracts to induce ovulation. The second injection was, however, successfully replaced by synthetic chorionic gonadotrophin at a threshold dosage of 100 iu and halved the number of cane toads required to source the pituitaries. A combination of LHRH and Pimozide offered a less effective protocol, that did not require the use of pituitary extracts, and avoided the risk of pathogen transfer associated with unsterilised pituitary extracts. Unfertilised eggs of Lim. tasmaniensis were exposed to media of various osmolalities to determine media effects on eggs and their surrounding jelly layers that might impact on egg viability and fertilisability. Osmolality had no effect upon the egg diameter, however, rapid swelling of the jelly layers occurred within 15 minutes of exposure to various media treatments and plateaued from 30-90 minutes without further expansion. Swelling of the jelly layers was increased in hypotonic media (2.5% SAR, H2O) and minimised in the isotonic media (100% SAR). The optimal conditions for the culture of Lim. tasmaniensis eggs were identified as a holding media of 100% SAR, followed by a medium change to 2.5% SAR at insemination. This sequence of media minimised the rate of swelling of the jelly layers prior to contact with the spermatozoa, and maximised the activation of spermatozoa and eggs throughout fertilisation and embryonic development. Embryos of Lim. tasmaniensis were cultured at four temperatures (13 C, 17 C, 23 C and 29 C), to determine the effect of temperature on cleavage and embryonic development rates. Embryonic development progressed through a sequence of stages that were not altered by changes in temperature. However cleavage rates were affected by changes in temperature as compared with normal embryonic growth at 23 C. Embryonic development was suspended at the lowest temperature (13 C) while embryonic viability was maintained. A moderate decrease in temperature (17 C) slowed cleavage, while the highest temperature (29 C) increased the cleavage rate, but decreased the embryo survival. Rates of embryonic development can be manipulated by changes in temperature and this method can be used to source blastomeres of a specific size/stage at a predetermined age or halt cleavage at specific stages for embryos or embryo derived cells to be included in ART procedures. This study produced the first report of the application of Intracytoplasmic Spermatozoon Injection (ICSI) in an Australian amphibian. Eggs that were activated by microinjection with a single spermatozoon (n=50) formed more deep, but abnormal, cleavage furrows post-injection (18/50, 36%), than surface changes (12/50, 24%). This result is in contrast to eggs injected without a spermatozoon (n=42), where the majority of eggs displayed limited surface changes (36/42, 86%), and few deep, abnormal furrows (3/42, 7%). Three advanced embryos (3/50, 6%) were produced by ICSI that developed to various stages within the culture system. Technical difficulties were encountered that prevented the generation of any metamorphs from ICSI tadpoles. Nevertheless, when these blocks to ICSI are overcome, the ICSI procedure will be both directly useful as an ART procedure in its own right, and the associated refinement of micromanipulation procedures will assist in the development of other ART procedures in Lim. tasmaniensis. A greater understanding of basic reproductive and developmental biology in Lim. tasmaniensis would greatly facilitate refinement of fertilisation by ICSI. Assisted Reproductive Technologies, in conjunction with gene banks may in the future regenerate extinct amphibian species, and assist in the recovery of declining amphibian populations nationally and worldwide.
Resumo:
Bananas are one of the world�fs most important crops, serving as a staple food and an important source of income for millions of people in the subtropics. Pests and diseases are a major constraint to banana production. To prevent the spread of pests and disease, farmers are encouraged to use disease�] and insect�]free planting material obtained by micropropagation. This option, however, does not always exclude viruses and concern remains on the quality of planting material. Therefore, there is a demand for effective and reliable virus indexing procedures for tissue culture (TC) material. Reliable diagnostic tests are currently available for all of the economically important viruses of bananas with the exception of Banana streak viruses (BSV, Caulimoviridae, Badnavirus). Development of a reliable diagnostic test for BSV is complicated by the significant serological and genetic variation reported for BSV isolates, and the presence of endogenous BSV (eBSV). Current PCR�] and serological�]based diagnostic methods for BSV may not detect all species of BSV, and PCR�]based methods may give false positives because of the presence of eBSV. Rolling circle amplification (RCA) has been reported as a technique to detect BSV which can also discriminate between episomal and endogenous BSV sequences. However, the method is too expensive for large scale screening of samples in developing countries, and little information is available regarding its sensitivity. Therefore the development of reliable PCR�]based assays is still considered the most appropriate option for large scale screening of banana plants for BSV. This MSc project aimed to refine and optimise the protocols for BSV detection, with a particular focus on developing reliable PCR�]based diagnostics Initially, the appropriateness and reliability of PCR and RCA as diagnostic tests for BSV detection were assessed by testing 45 field samples of banana collected from nine districts in the Eastern region of Uganda in February 2010. This research was also aimed at investigating the diversity of BSV in eastern Uganda, identifying the BSV species present and characterising any new BSV species. Out of the 45 samples tested, 38 and 40 samples were considered positive by PCR and RCA, respectively. Six different species of BSV, namely Banana streak IM virus (BSIMV), Banana streak MY virus (BSMYV), Banana streak OL virus (BSOLV), Banana streak UA virus (BSUAV), Banana streak UL virus (BSULV), Banana streak UM virus (BSUMV), were detected by PCR and confirmed by RCA and sequencing. No new species were detected, but this was the first report of BSMYV in Uganda. Although RCA was demonstrated to be suitable for broad�]range detection of BSV, it proved time�]consuming and laborious for identification in field samples. Due to the disadvantages associated with RCA, attempts were made to develop a reliable PCR�]based assay for the specific detection of episomal BSOLV, Banana streak GF virus (BSGFV), BSMYV and BSIMV. For BSOLV and BSGFV, the integrated sequences exist in rearranged, repeated and partially inverted portions at their site of integration. Therefore, for these two viruses, primers sets were designed by mapping previously published sequences of their endogenous counterparts onto published sequences of the episomal genomes. For BSOLV, two primer sets were designed while, for BSGFV, a single primer set was designed. The episomalspecificity of these primer sets was assessed by testing 106 plant samples collected during surveys in Kenya and Uganda, and 33 leaf samples from a wide range of banana cultivars maintained in TC at the Maroochy Research Station of the Department of Employment, Economic Development and Innovation (DEEDI), Queensland. All of these samples had previously been tested for episomal BSV by RCA and for both BSOLV and BSGFV by PCR using published primer sets. The outcome from these analyses was that the newly designed primer sets for BSOLV and BSGFV were able to distinguish between episomal BSV and eBSV in most cultivars with some B�]genome component. In some samples, however, amplification was observed using the putative episomal�]specific primer sets where episomal BSV was not identified using RCA. This may reflect a difference in the sensitivity of PCR compared to RCA, or possibly the presence of an eBSV sequence of different conformation. Since the sequences of the respective eBSV for BSMYV and BSIMV in the M. balbisiana genome are not available, a series of random primer combinations were tested in an attempt to find potential episomal�]specific primer sets for BSMYV and BSIMV. Of an initial 20 primer combinations screened for BSMYV detection on a small number of control samples, 11 primers sets appeared to be episomal�]specific. However, subsequent testing of two of these primer combinations on a larger number of control samples resulted in some inconsistent results which will require further investigation. Testing of the 25 primer combinations for episomal�]specific detection of BSIMV on a number of control samples showed that none were able to discriminate between episomal and endogenous BSIMV. The final component of this research project was the development of an infectious clone of a BSV endemic in Australia, namely BSMYV. This was considered important to enable the generation of large amounts of diseased plant material needed for further research. A terminally redundant fragment (.1.3 �~ BSMYV genome) was cloned and transformed into Agrobacterium tumefaciens strain AGL1, and used to inoculate 12 healthy banana plants of the cultivars Cavendish (Williams) by three different methods. At 12 weeks post�]inoculation, (i) four of the five banana plants inoculated by corm injection showed characteristic BSV symptoms while the remaining plant was wilting/dying, (ii) three of the five banana plants inoculated by needle�]pricking of the stem showed BSV symptoms, one plant was symptomless while the remaining had died and (iii) both banana plants inoculated by leaf infiltration were symptomless. When banana leaf samples were tested for BSMYV by PCR and RCA, BSMYV was confirmed in all banana plants showing symptoms including those were wilting and/or dying. The results from this research have provided several avenues for further research. By completely sequencing all variants of eBSOLV and eBSGFV and fully sequencing the eBSIMV and eBSMYV regions, episomal BSV�]specific primer sets for all eBSVs could potentially be designed that could avoid all integrants of that particular BSV species. Furthermore, the development of an infectious BSV clone will enable large numbers of BSVinfected plants to be generated for the further testing of the sensitivity of RCA compared to other more established assays such as PCR. The development of infectious clones also opens the possibility for virus induced gene silencing studies in banana.
Resumo:
This study investigated the effect of engine backpressure on the performance and emissions of a CI engine under different speed and load conditions. A 4-stroke single cylinder naturally aspirated direct injection (DI) diesel engine was used for the investigation with the backpressure of 0, 40, 60 and 80 mm of Hg at engine speed of 600, 950 and 1200 rpm. Two parameters were measured during the engine operation: one is engine performance (brake thermal efficiency and brake specific fuel consumption), and the other is the exhaust emissions (NOx, CO and odor). NOx and CO emission were measured by flue gas analyzer (IMR 1400). The engine backpressure produced by the flow regulating valve in the exhaust line was measured by Hg (mercury) manometer. The result showed that, the brake thermal efficiency and brake specific fuel consumption (bsfc) are almost unchanged with increasing backpressure up to 40 mm of Hg pressure for all engine speed and load conditions. The NOx emission became constant or a little decreased with increasing backpressure. The formation of CO was slightly higher with increase of load and back pressure at low engine speed condition. However, under high speed conditions, CO reduced significantly with increasing backpressure for all load conditions. The odor level was similar or a little higher with increasing backpressure for all engine speed and load conditions. Hence, backpressure up to a certain level is not detrimental for a CI engine.
Resumo:
Purpose To study the protective effects and underlying molecular mechanisms of SAMC on carbon tetrachloride (CCl4)-induced acute hepatotoxicity in the mouse model. Methods Mice were intraperitoneally injected with CCl4 (50 μl/kg; single dose) to induce acute hepatotoxicity with or without a 2-h pre-treatment of SAMC intraperitoneal injection (200 mg/kg; single dose). After 8 h, the blood serum and liver samples of mice were collected and subjected to measurements of histological and molecular parameters of hepatotoxicity. Results SAMC reduced CCl4-triggered cellular necrosis and inflammation in the liver under histological analysis. Since co-treatment of SAMC and CCl4 enhanced the expressions of antioxidant enzymes, reduced the nitric oxide (NO)-dependent oxidative stress, and inhibited lipid peroxidation induced by CCl4. SAMC played an essential antioxidative role during CCl4-induced hepatotoxicity. Administration of SAMC also ameliorated hepatic inflammation induced by CCl4 via inhibiting the activity of NF-κB subunits p50 and p65, thus reducing the expressions of pro-inflammatory cytokines, mediators, and chemokines, as well as promoting pro-regenerative factors at both transcriptional and translational levels. Conclusions Our results indicate that SAMC mitigates cellular damage, oxidative stress, and inflammation in CCl4-induced acute hepatotoxicity mouse model through regulation of NF-κB. Garlic or garlic derivatives may therefore be a potential food supplement in the prevention of liver damage.
Resumo:
This eChapter has an introduction to pharmacology and drug nomenclature followed by a detailed discussion of routes of administration starting with oral administration (with absorption from the gastrointestinal tract, and first pass liver metabolism. This is followed by a discussion of rectal, sublingual and injection routes of administration(intravenous, intra-arterial, subcutaneous, intramuscular, intrathecal and epidural). Then the topical, pulmonary and intraosseus routes of administration are considered.
Resumo:
Virus-like particle-based vaccines for high-risk human papillomaviruses (HPVs) appear to have great promise; however, cell culture-derived vaccines will probably be very expensive. The optimization of expression of different codon-optimized versions of the HPV-16 L1 capsid protein gene in plants has been explored by means of transient expression from a novel suite of Agrobacterium tumefaciens binary expression vectors, which allow targeting of recombinant protein to the cytoplasm, endoplasmic reticulum (ER) or chloroplasts. A gene resynthesized to reflect human codon usage expresses better than the native gene, which expresses better than a plant-optimized gene. Moreover, chloroplast localization allows significantly higher levels of accumulation of L1 protein than does cytoplasmic localization, whilst ER retention was least successful. High levels of L1 (>17% total soluble protein) could be produced via transient expression: the protein assembled into higher-order structures visible by electron microscopy, and a concentrated extract was highly immunogenic in mice after subcutaneous injection and elicited high-titre neutralizing antibodies. Transgenic tobacco plants expressing a human codon-optimized gene linked to a chloroplast-targeting signal expressed L1 at levels up to 11% of the total soluble protein. These are the highest levels of HPV L1 expression reported for plants: these results, and the excellent immunogenicity of the product, significantly improve the prospects of making a conventional HPV vaccine by this means. © 2007 SGM.
Resumo:
Human papillomaviruses are the etiological agents of cervical cancer, one of the two most prevalent cancers in women in developing countries. Currently available prophylactic vaccines are based on the L1 major capsid protein, which forms virus-like particles when expressed in yeast and insect cell lines. Despite their recognized efficacy, there are significant shortcomings: the vaccines are expensive, include only two oncogenic virus types, are delivered via intramuscular injection and require a cold chain. Plant expression systems may provide ways of overcoming some of these problems, in particular the expense. In this article, we report recent promising advances in the production of prophylactic and therapeutic vaccines against human papillomavirus by expression of the relevant antigens in plants, and discuss future prospects for the use of such vaccines. © 2010 Expert Reviews Ltd.
Resumo:
Ureaplasma infection of the amniotic cavity is associated with adverse postnatal intestinal outcomes. We tested whether interleukin-1 (IL-1) signaling underlies intestinal pathology following ureaplasma exposure in fetal sheep. Pregnant ewes received intra-amniotic injections of ureaplasma or culture media for controls at 3, 7, and 14 d before preterm delivery at 124 d gestation (term 150 d). Intra-amniotic injections of recombinant human interleukin IL-1 receptor antagonist (rhIL-1ra) or saline for controls were given 3 h before and every 2 d after Ureaplasma injection. Ureaplasma exposure caused fetal gut inflammation within 7 d with damaged villus epithelium and gut barrier loss. Proliferation, differentiation, and maturation of enterocytes were significantly reduced after 7 d of ureaplasma exposure, leading to severe villus atrophy at 14 d. Inflammation, impaired development and villus atrophy of the fetal gut was largely prevented by intra-uterine rhIL-1ra treatment. These data form the basis for a clinical understanding of the role of ureaplasma in postnatal intestinal pathologies.
Resumo:
Sampling of the El Chichón stratospheric cloud in early May and in late July, 1982, showed that a significant proportion of the cloud consisted of solid particles between 2 μm and 40 μm size. In addition, many particles may have been part of larger aggregates or clusters that ranged in size from < 10 μm to > 50 μm. The majority of individual grains were angular aluminosilicate glass shards with various amounts of smaller, adhering particles. Surface features on individual grains include sulfuric acid droplets and larger (0.5 μm to 1 μm) sulfate gel droplets with various amounts of Na, Mg, Ca and Fe. The sulfate gels probably formed by the interaction of sulfur-rich gases and solid particles within the cloud soon after eruption. Ca-sulfate laths may have formed by condensation within the plume during eruption, or alternatively, at a later stage by the reaction of sulfuric acid aerosols with ash fragments within the stratospheric cloud. A Wilson-Huang formulation for the settling rate of individual particles qualitatively agrees with the observed particle-size distribution for a period at least four months after injection of material into the stratosphere. This result emphasizes the importance of particle shape in controlling the settling rate of volcanic ash from the stratosphere.
Resumo:
To fumigate grain stored in a silo, phosphine gas is distributed by a combination of diffusion and fan-forced advection. This initial study of the problem mainly focuses on the advection, numerically modelled as fluid flow in a porous medium. We find satisfactory agreement between the flow predictions of two Computational Fluid Dynamics packages, Comsol and Fluent. The flow predictions demonstrate that the highest velocity (>0.1 m/s) occurs less than 0.2m from the inlet and reduces drastically over one metre of silo height, with the flow elsewhere less than 0.002 m/s or 1% of the velocity injection. The flow predictions are examined to identify silo regions where phosphine dosage levels are likely to be too low for effective grain fumigation.
Resumo:
A new control method for battery storage to maintain acceptable voltage profile in autonomous microgrids is proposed in this article. The proposed battery control ensures that the bus voltages in the microgrid are maintained during disturbances such as load change, loss of micro-sources, or distributed generations hitting power limit. Unlike the conventional storage control based on local measurements, the proposed method is based on an advanced control technique, where the reference power is determined based on the voltage drop profile at the battery bus. An artificial neural network based controller is used to determine the reference power needed for the battery to hold the microgrid voltage within regulation limits. The pattern of drop in the local bus voltage during power imbalance is used to train the controller off-line. During normal operation, the battery floats with the local bus voltage without any power injection. The battery is charged or discharged during the transients with a high gain feedback loop. Depending on the rate of voltage fall, it is switched to power control mode to inject the reference power determined by the proposed controller. After a defined time period, the battery power injection is reduced to zero using slow reverse-droop characteristics, ensuring a slow rate of increase in power demand from the other distributed generations. The proposed control method is simulated for various operating conditions in a microgrid with both inertial and converter interfaced sources. The proposed battery control provides a quick load pick up and smooth load sharing with the other micro-sources in a disturbance. With various disturbances, maximum voltage drop over 8% with conventional energy storage is reduced within 2.5% with the proposed control method.