980 resultados para indirect resin composites
Resumo:
Ultrafast lasers play a key role in a variety of devices, from basic research to materials processing and medicine. Graphene has great potential as saturable absorber for ultrafast lasers. Here we present an overview of graphene-based ultrafast lasers, from solution processing of the raw materials, to their incorporation into polymers, device fabrication and testing. © 2011 The Japan Society of Applied Physics.
Resumo:
We bring together two areas of terahertz (THz) technology that have benefited from recent advancements in research, i.e., graphene, a material that has plasmonic resonances in the THz frequency, and quantum cascade lasers (QCLs), a compact electrically driven unipolar source of THz radiation. We demonstrate the use of single-layer large-area graphene to indirectly modulate a THz QCL operating at 2.0 THz. By tuning the Fermi level of the graphene via a capacitively coupled backgate voltage, the optical conductivity and, hence, the THz transmission can be varied. We show that, by changing the pulsing frequency of the backgate, the THz transmission can be altered. We also show that, by varying the pulsing frequency of the backgate from tens of Hz to a few kHz, the amplitude-modulated THz signal can be switched by 15% from a low state to a high state. © 2009-2012 IEEE.
Resumo:
The composite nature of mineralized natural materials is achieved through both the microstructural inclusion of an organic component and an overall microstructure that is controlled by templating onto organic macromolecules. A modification of an existing laboratory technique is developed for the codeposition of a CaCO3-gelatin composite with a controllable organic content. First, calibration curves are developed to determine the organic content of a CaCO3-gelatin composite from infrared spectra. Second, a CaCO3-gelatin composite is deposited on either glass coverslips or demineralized eggshell membranes using an automated alternating soaking process. Electron microscopy images and use of the infrared spectra calibration curves show that by altering the amount of gelatin in the ionic growth solutions, the final organic component of the mineral can be regulated over the range of 1-10%, similar to that of natural eggshell. © 2012 Materials Research Societ.
Resumo:
High brightness trans-reflective bi-stable displays based on smectic A (SmA) liquid crystals (LCs) can have nearly perfect transparency in the clear state and very high reflection in the scattered state. Because the LC material in use is stable under UV radiation, this kind of displays can stand for strong day-light and therefore be ideal for outdoor applications from e-books to public signage and advertisement. However, the colour application has been limited because the traditional colourants in use are conventional dyes which are lack of UV stability and that their colours are easily photo bleached. Here we present a colour SmA display demonstrator using pigments as colourant. Mixing pigments with SmA LCs and maintain the desirable optical switching performance is not straightforward. We show here how it can be done, including how to obtain fine sized pigment nano-particles, the effects of particle size and size distribution on the display performance. Our optimized pigments/SmA compositions can be driven by a low frequency waveform (∼101Hz) to a scattered state to exhibit colour while by a high frequency waveform (∼103Hz) to a cleared state showing no colour. Finally, we will present its excellent UV life-time (at least >7.2 years) in comparison with that of dye composition (∼2.4 years). The complex interaction of pigment nano-particles with LC molecules and the resulting effects on the LC electro-optical performances are still to be fully understood. We hope this work will not only demonstrate a new and practical approach for outdoor reflective colour displays but also provide a new material system for fundamental liquid crystal colloid research work. © 2012 SPIE.
Resumo:
Single lap joints of woven GFRP composites have been investigated for impact induced damage modes using C-scan, X-ray micro tomography, imaging and finite element (FE) modelling. This has allowed for damage modes to be observed in 3D from macro to micro level-resulting in much better understanding of damage mechanisms and realistic FE modelling.
Resumo:
We report the results of electrical resistivity measurements carried out on well-sintered La0.7Ca0.3MnO3 / Mn3O4 composite samples with almost constant composition of the magnetoresistive manganite phase (La0.7Ca0.3MnO3). A percolation threshold (fc) occurs when the La0.7Ca0.3MnO3 volume fraction is ~ 0.19. The dependence of the electrical resistivity as a function of La0.7Ca0.3MnO3 volume fraction (fLCMO) can be described by percolation-like phenomenological equations. Fitting the conducting regime (fLCMO > fc) by the percolation power law returns a critical exponent t value of 2.0 +/- 0.2 at room temperature and 2.6 +/-0.2 at 5 K. The increase of t is ascribed to the influence of the grain boundaries on the electrical conduction process at low temperature.
Resumo:
Composites of magnetoresistive La 0.7Ca 0.3MnO 3 (LCMO) with insulating Mn 3O 4 are useful as a model system because no foreign cation is introduced in the LCMO phase by interdiffusion during the heat treatment. Here we report the magnetotransport properties as a function of sintering temperature T sinter for a fixed LCMO/Mn 3O 4 ratio. Decreasing T sinter from 1250 °C to 800 °C causes an increase in low field magnetoresistance (LFMR) that correlates with the decrease in crystallite size (CS) of the LCMO phase. When plotting LFMR at (77 K, 0.5 T) versus 1/CS, we find that the data for the LCMO/Mn 3O 4 composites sintered between 800 °C and 1250 °C follow the same trend line as data from the literature for pure LCMO samples with crystallite size >∼25 nm. This differs from the LFMR enhancement observed by many authors in the usual manganite composites, i.e., composites where the insulating phase contains cations other than La, Ca or Mn. This difference suggests that diffusion of foreign cations into the grain boundary region is a necessary ingredient for the enhanced LFMR. © 2012 American Institute of Physics.
Resumo:
La0.7Ca0.3MnO3/Mn3O4 composites can be synthesized in one step by thermal treatment of a spray-dried precursor, instead of mixing pre-synthesized powders. Another advantage of this composite system is that a long sintering step can be used without leading to significant modification of the manganite composition. The percolation threshold is reached at ∼20 vol% of manganite phase. The 77 K low field magnetoresistance is enhanced to ∼11% at 0.15 T when the composition is close to the percolation threshold. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
Plants as well as other biological organisms achieve directed movements by fibres that constraint and direct the isotropic expansion of a matrix material. In order to mimic these actuators, complex arrangements of rigid fibres must be achieved, which is challenging, especially at small scales. In this paper, a new method to organize carbon nanotubes (CNTs) into complex shapes is employed to create a framework for hydrogel infiltration. These CNT frameworks can be realized as iris, needle and bridge architectures, and after hydrogel infiltration, they show directed actuation in response to water uptake. Finally, we show how the latter can be employed as a novel hygroscopic sensor. © 2011 IEEE.
Resumo:
New materials are needed to replace degenerated intervertebral disc tissue and to provide longer-term solutions for chronic back-pain. Replacement tissue potentially could be engineered by seeding cells into a scaffold that mimics the architecture of natural tissue. Many natural tissues, including the nucleus pulposus (the central region of the intervertebral disc) consist of collagen nanofibers embedded in a gel-like matrix. Recently it was shown that electrospun micro- or nano-fiber structures of considerable thickness can be produced by collecting fibers in an ethanol bath. Here, randomly aligned polycaprolactone electrospun fiber structures up to 50 mm thick are backfilled with alginate hydrogels to form novel composite materials that mimic the fiber-reinforced structure of the nucleus pulposus. The composites are characterized using both indentation and tensile testing. The composites are mechanically robust, exhibiting substantial strain-to-failure. The method presented here provides a way to create large biomimetic scaffolds that more closely mimic the composite structure of natural tissue. © 2012 Materials Research Society.
Resumo:
Biomineralized composite materials found in nature have a compromise of good mechanical properties and relatively small embodied energies in the process of their formation. The Alternate Soaking Process (ASP) is a laboratory technique that has only recently been applied to replicating composite biomineralization. The nexus of the ASP - heterogeneous nucleation - makes it ideal for replicating biominerals where the mineral is templated onto an organic substrate, such as occurs in avian eggshell. Here we demonstrate the deposition of a calcium carbonate gelatin composite on either glass cover slips or demineralized eggshell membranes using an automated ASP. SEM images and FTIR spectra of the resulting mineral show that by altering the amount of gelatin in the growth solutions the final organic component can be controlled accurately in the range of 1-10%, similar to that of natural eggshell. This study shows for the first time the co-precipitation of a CaCO3 - gelatin composite by an ASP and that the organic fraction of this mineral can be tuned to mimic that of natural biomineralized composites. © 2012 Materials Research Society.
Resumo:
In order to account for interfacial friction of composite materials, an analytical model based on contact geometry and local friction is proposed. A contact area includes several types of microcontacts depending on reinforcement materials and their shape. A proportion between these areas is defined by in-plane contact geometry. The model applied to a fibre-reinforced composite results in the dependence of friction on surface fibre fraction and local friction coefficients. To validate this analytical model, an experimental study on carbon fibrereinforced epoxy composites under low normal pressure was performed. The effects of fibre volume fraction and fibre orientation were studied, discussed and compared with analytical model results. © Springer Science+Business Media, LLC 2012.