976 resultados para indigenous perspectives
Resumo:
Two main perspectives have been developed within the Multidisciplinary Design Optimization (MDO) literature for classifying and comparing MDO architectures: a numerical point of view and a formulation/data flow point of view. Although significant work has been done here, these perspectives have not provided much in the way of a priori information or predictive power about architecture performance. In this report, we outline a new perspective, called the geometric perspective, which we believe will be able to provide such predictive power. Using tools from differential geometry, we take several prominent architectures and describe mathematically how each constructs the space through which it moves. We then consider how the architecture moves through the space which it has constructed. Taken together, these investigations show how each architecture relates to the original feasible design manifold, how the architectures relate to each other, and how each architecture deals with the design coupling inherent to the original system. This in turn lays the groundwork for further theoretical comparisons between and analyses of MDO architectures and their behaviour using tools and techniques derived from differential geometry. © 2012 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
There has been an increasing interest in the use of unconventional materials and morphologies in robotic systems because the underlying mechanical properties (such as body shapes, elasticity, viscosity, softness, density and stickiness) are crucial research topics for our in-depth understanding of embodied intelligence. The detailed investigations of physical system-environment interactions are particularly important for systematic development of technologies and theories of emergent adaptive behaviors. Based on the presentations and discussion in the Future Emerging Technology (fet11) conference, this article introduces the recent technological development in the field of soft robotics, and speculates about the implications and challenges in the robotics and embodied intelligence research. © Selection and peer-review under responsibility of FET11 conference organizers and published by Elsevier B.V.
Resumo:
This article discusses the issues of adaptive autonomous navigation as a challenge of artificial intelligence. We argue that, in order to enhance the dexterity and adaptivity in robot navigation, we need to take into account the decentralized mechanisms which exploit physical system-environment interactions. In this paper, by introducing a few underactuated locomotion systems, we explain (1) how mechanical body structures are related to motor control in locomotion behavior, (2) how a simple computational control process can generate complex locomotion behavior, and (3) how a motor control architecture can exploit the body dynamics through a learning process. Based on the case studies, we discuss the challenges and perspectives toward a new framework of adaptive robot control. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
The genome of aquatic animals is poorly understood and information from different taxonomic groups is sketchy. While there have been intensive genomic studies on some fish models, investigations on other fishes and invertebrates have been scarce. Yet there are recently some coordinated studies on genome mapping in a number of aquaculture animals of economic importance. This review summarizes information available on genome mapping of the important fish models and aquaculture animals. The future perspectives of this field of studies are discussed.
Resumo:
We explored the origin of power law distribution observed in single-molecule conformational dynamics experiments. By establishing a kinetic master equation approach to study statistically the microscopic state dynamics, we show that the underlying landscape with exponentially distributed density of states leads to power law distribution of kinetics. The exponential density of states emerges when the system becomes glassy and landscape becomes rough with significant trapping.
Resumo:
Three-protein circadian oscillations in cyanobacteria sustain for weeks. To understand how cellular oscillations function robustly in stochastic fluctuating environments, we used a stochastic model to uncover two natures of circadian oscillation: the potential landscape related to steady-state probability distribution of protein concentrations; and the corresponding flux related to speed of concentration changes which drive the oscillations. The barrier height of escaping from the oscillation attractor on the landscape provides a quantitative measure of the robustness and coherence for oscillations against intrinsic and external fluctuations. The difference between the locations of the zero total driving force and the extremal of the potential provides a possible experimental probe and quantification of the force from curl flux. These results, correlated with experiments, can help in the design of robust oscillatory networks.
Resumo:
We study the origin of robustness of yeast cell cycle cellular network through uncovering its underlying energy landscape. This is realized from the information of the steady-state probabilities by solving a discrete set of kinetic master equations for the network. We discovered that the potential landscape of yeast cell cycle network is funneled toward the global minimum, G1 state. The ratio of the energy gap between G1 and average versus roughness of the landscape termed as robustness ratio ( RR) becomes a quantitative measure of the robustness and stability for the network. The funneled landscape is quite robust against random perturbations from the inherent wiring or connections of the network. There exists a global phase transition between the more sensitive response or less self-degradation phase leading to underlying funneled global landscape with large RR, and insensitive response or more self-degradation phase leading to shallower underlying landscape of the network with small RR. Furthermore, we show that the more robust landscape also leads to less dissipation cost of the network. Least dissipation and robust landscape might be a realization of Darwinian principle of natural selection at cellular network level. It may provide an optimal criterion for network wiring connections and design.